Composantes connexes des formes quadratiques réelles

Leçons concernées

- * 171 : Formes quadratiques réelles. Coniques. Exemples et applications.
- * 170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.
- * 204 : Connexité. Exemples et applications.

Réference

* FGN - Algèbre 3

Soit (E, ||.||) un \mathbb{R} -espace vectoriel normé de dimension fini n. On considère $\mathcal{Q}(E)$ l'ensemble des formes quadratiques sur E, qui est un \mathbb{R} -espace vectoriel, que nous munissons de la forme : $\forall q \in \mathcal{Q}(E), N(q) = \sup_{\|x\|=1} |q(x)|$. On considère $\mathcal{Q}^*(E)$ l'ensemble des formes quadratiques non dégénérées.

Théorème. $Q^*(E)$ est ouvert dans Q(E). De plus, ses composantes connexes sont les sous-ensembles :

$$\forall i \in [0, n], \mathcal{Q}_{i}^{*}(E) = \{ q \in \mathcal{Q}^{*}(E) \mid sign(q) = (i, n - i) \}$$

Démonstration. Soit \mathcal{B} une base de E. Alors l'application qui à une forme quadratique $q \in \mathcal{Q}(E)$ associe sa matrice dans la base \mathcal{B} est un isomorphisme d'espace vectoriel entre $\mathcal{Q}(E)$ et $S_n(\mathbb{R})$. Par cet isomorphisme, $\mathcal{Q}^*(E)$ s'identifie à $S_n(\mathbb{R}) \cap GL_n(\mathbb{R})$.

Or, $GL_n(\mathbb{R})$ est ouvert dans l'espace des matrices réelles de taille n, en tant qu'image réciproque par det (qui est continue car polynomiale) de \mathbb{R}^* qui est ouvert. Ce faisant, $S_n(\mathbb{R}) \cap GL_n(\mathbb{R})$ est ouvert pour la topologie induite par $S_n(\mathbb{R})$ ce qui montre la première partie du théorème.

Montrons le deuxième point. Tout d'abord, remarquons qu'on a, d'après le théorème de Sylvester, $\mathcal{Q}^*(E) = \bigsqcup_{i=0}^n \mathcal{Q}_i^*(E)$. Donc, pour prouver le résultat, nous allons démontrer que pour tout i entre 1 et n, $\mathcal{Q}_i^*(E)$ est ouvert et connexe.

Montrons d'abord que $Q_i^*(E)$ est ouvert. Nous allons prendre q un élément dans cet espace. D'après le théorème de Sylvester, il existe F_+ et F_- deux sous-espaces vectoriels supplémentaires dans E tels que $q_{|F_+}$ est définie positive, et $q_{|F_-}$ est définie négative.

Nous avons alors, sur chacun de ces espaces, deux nouvelles normes. $\sqrt{q_{|F_+}}$ définie une norme sur F_+ . Or, cet espace est de dimension fini. Cette norme est donc équivalente à $||.||_{|F_+}$. Il existe alors, en particulier, un réel strictement positif a tel que $\forall x \in F_+, q(x) \geq a^2||x||^2$ (on a une autre inégalité, mais on prends celle-ci pour garantir qu'une forme quadratique assez proche de q sera toujours définie positive sur F_+). De la même manière, il existe un coefficient strictement positif b tel que $\forall x \in F_-, q(x) \leq -b^2||x||^2, \sqrt{-q_{F_-}}$

étant une norme sur F_{-} .

Soit maintenant $\varepsilon = \frac{1}{2}min(a^2, b^2)$. Montrons que la boule de centre q de rayon ε est encore dans $\mathcal{Q}_i^*(E)$. Soit \widetilde{q} un élément de $\mathcal{Q}^*(E)$ tel que $N(q - \widetilde{q}) < \varepsilon$. Alors, par définition de la norme N, $\forall x \in E, |q(x) - \widetilde{q}(x)| \le \varepsilon ||x||^2$ soit $q(x) - \varepsilon ||x||^2 \le \widetilde{q}(x) \le q(x) + \varepsilon ||x||^2$.

On a ainsi $\forall x \in F_+, \widetilde{q}(x) \ge (a^2 - \varepsilon)||x||^2 \ge \frac{1}{2}a^2||x||^2$. Ainsi, sur F_+, \widetilde{q} est définie positive. De même, $\forall x \in F_-, \widetilde{q}(x) \le (\varepsilon - b^2)||x||^2 \le -\frac{1}{2}b^2||x||^2$. \widetilde{q} est donc définie négative sur F_- .

Au final, \widetilde{q} est donc bien de signature (i, n-i) ce qui prouve bien que $\mathcal{Q}_i^*(E)$ est ouvert.

Maintenant que nous savons que chacun des $\mathcal{Q}_i^*(E)$ est ouvert, prouvons que ceux-ci sont connexes. Pour cela, il suffit de prouver que ces parties sont connexes par arcs. Soit alors q une forme quadratique de $\mathcal{Q}_i^*(E)$. D'après le théorème de Sylvester, il existe une matrice $P \in GL_n(\mathbb{R})$ telle que $\mathcal{M}_{\mathcal{B}}(q) = P^T J_i P$ où $J_i = diag(I_i, I_{n-i})$. Quitte à multiplier la première colonne de P par -1, on peut supposer que det(P) > 0. Dans ce cas, P est dans $GL_n^+(\mathbb{R})$ qui est connexe par arcs. On peut donc trouver un chemin γ dans $GL_n^+(\mathbb{R})$ qui joint P et l'identité I_n .

Ainsi, $\Gamma(t) = \gamma(t)^T J_i \gamma(t)$ est un chemin qui lie $\mathcal{M}_{\mathcal{B}}(q)$ à J_i . Par l'isomorphisme donné au tout début de ce développement, ceci nous donne un chemin continue entre q et la forme quadratique définie par J_i , dans $\mathcal{Q}_i^*(E)$. L'espace est donc connexe par arcs, et par la remarque du début, on a bien les composantes connexes, ce qui achève ce développement.

Remarques:

- Attention! Ce n'est pas le théorème Spectral qu'il faut appliquer à la fin, mais bien le théorème de Sylvester ... Le théorème spectral nous permet effectivement de diagonaliser $\mathcal{M}_{\mathcal{B}}(q)$ dans une base orthonormée, ce qui nous permet de trouver, en particulier, une forme quadratique équivalente, cependant, rien ne nous dit que la matrice diagonale obtenue est J_i (par exemple, diag(2,1) est déjà diagonalisée dans une base orthogonale de vecteur propre, pour autant elle est congruente à I_2 ...).
- Pour prouver que les $\mathcal{Q}_i^*(E)$ sont effectivement les composantes connexes, soit C_i la composante connexe de $\mathcal{Q}^*(E)$ contenant J_i . Puisque c'est le plus grand connexe le contenant (par définition), on a $\mathcal{Q}_i^*(E) \subset C_i$. Mais $C_i \subset \mathcal{Q}_i^*(E) \sqcup A$ où A est l'union des autres $\mathcal{Q}_j^*(E)$, qui est ouvert. Par connexité de C_i , et parce que $J_i \in \mathcal{Q}_i^*(E)$, on a donc $C_i \subset \mathcal{Q}_i^*(E)$ et donc égalité.
- Il n'est pas tout à fait clair que si \widetilde{q} est définie positive sur F_+ et définie négative sur F_- , alors $sign(\widetilde{q})=(i,n-i)$. Pour démontrer ceci, on suppose que $sign(\widetilde{q})=(j,n-j)$. Par Sylvester, on peut trouver G_+ et G_- supplémentaires dans E respectivement de dimensions j et n-j où \widetilde{q} est respectivement définie positive, et définie négative. On remarque alors, par caractère définie sur ces espaces, que $F_+ \cap G_- = \{0\}$. Donc $dim(F_+ + G_-) = i + n j$ et cette dimension doit être plus petite que celle de l'espace ambiant qui est n. Ceci donne $i \leq j$. On a de même réciproquement par symétrie, d'où l'égalité.

Il vaut mieux ajouter ce résultat dans le plan, en remarquant que c'est la même preuve que l'unicité dans Sylvester.