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Résumé X

Equations de Maurer-Cartan et homotopie des espaces d’applications
opéradiques en caractéristique positive

Résumé

Le but de cette these est d’étudier le type d’homotopie d’espaces d’applications opéradiques.
Dans une premiere partie, nous étudions les algebres pré-Lie différentielles graduées a puis-
sances divisées sur un anneau de caractéristique positive, et construisons une théorie de la
déformation contrélée par ces algebres. Nous montrons que cette théorie de la déformation
admet un analogue au théoreme de Goldman-Millson, puis appliquons cette théorie au cal-
cul des composantes connexes d’un espace d’applications dans la catégorie des opérades
symétriques. Dans une seconde partie, nous définissons et étudions une notion d’espace de
Maurer-Cartan simplicial associé a une algebre brace compléte. Nous montrons qu’une algebre
brace détermine une algebre pré-Lie a homotopie pres simpliciale a puissances divisées. L’es-
pace de Maurer-Cartan simplicial est donné par les solutions de ’équation de Maurer-Cartan
dans cette algebre. Nous déterminons le type d’homotopie de cet ensemble simplicial, et
montrons une extension du théoreme de Goldman-Millson satisfaite par ces espaces simpli-
ciaux. Nous montrons que nous pouvons décrire un espace d’applications dans la catégorie des
opérades non symétriques en tant qu’espace de Maurer-Cartan simplicial associé a une cer-
taine brace algebre complete. Nous exprimons enfin un espace d’application dans la catégorie
des opérades symétriques en tant qu’ensemble de Maurer-Cartan degré par degré de certaines
algebres pré-Lie a homotopie pres a puissances divisées.

Mots clés : opérades, théorie de la déformation, algebres pré-lie, topologie algébrique

Maurer-Cartan equations and homotopy of operadic mapping spaces in positive
characteristic

Abstract

The aim of this thesis is to study the homotopy of operadic mapping spaces. In the first part,
we study differential graded pre-Lie algebras with divided powers and construct a deformation
theory controled by these algebras. We prove that this deformation theory admits an analogue
of the Goldman-Millson theorem, and apply this theory to the computation of the connected
components of a mapping space in the category of symmetric operads. In a second part,
we define and study a notion of simplicial Maurer-Cartan set associated to a complete brace
algebra. For this purpose, we use that any brace algebra determines a simplicial pre-Lie
algebra up to homotopy with divided powers. The simplicial Maurer-Cartan set is given by
the solutions of the Maurer-Cartan equation in this algebra. We determine the homotopy
type of this simplicial Maurer-Cartan set and prove an extension of the Goldman-Millson
theorem. We show that we can describe a mapping space in the category of non-symmmetric
operads as a simplicial Maurer-Cartan set of some complete brace algebra. We finally describe
a mapping space in the category of symmetric operads as a degree-wise Maurer-Cartan set
of some pre-Lie algebras up to homotopy with divided powers.

Keywords: operads, deformation theory, pre-lie algebras, algebraic topology

Laboratoire Paul Painlevé - UMR 8524
Université de Lille — Cité Scientifique - Batiment M2 — F-59655 VILLENEUVE
d’ASCQ Cedex — France



Résumé




[ntroduction (en francais)

Dans cette these, nous étudions ’homotopie des espaces d’applications associés a
des opérades définies sur un corps de caractéristique positive.

Opérades et algebres sur une opérade

La notion d’opérade a été introduite afin de définir des catégories d’algebres décrites
par des opérations. Cette notion a initialement été introduite dans I’étude des espaces
de lacets (voir [May06]). Les opérades sont depuis utilisées dans de nombreux domaines
des mathématiques.

Pour notre étude, nous considérons principalement des opérades dans une catégorie
des K-modules gradués et munis d’'une différentielle (ou dg K-modules). Les exemples
fondamentaux d’opérades sont définies sur une catégorie de modules. Nous pouvons
voir ces opérades comme des opérades dans les dg K-modules concentrés en degré 0.
Nous travaillons dans la catégorie des dg K-modules afin de faire de la théorie de I’ho-
mologie et de donner des applications en théorie de I’homotopie.

Dans cette configuration, une opérade est une suite de dg K-modules (P(n)),, telle
que chaque P(n) est muni d’une action du groupe symétrique 3,,, et nous avons des
opérations de composition partielles

0; : P(n) @ P(m) — P(n+m—1)

pour tout 1 < i < n, qui satisfont des axiomes d’associativité, d'unité et d’équivariance.
Pour tout p € P(n) et ¢ € P(m), opération p o; ¢ représente I'insertion de 1'opération
q a la i-eme variable de 'opération p. Un morphisme d’opérades P — Q est une suite
de morphismes P(n) — Q(n) qui préservent les compositions opéradiques de P et Q
et I’action des groupes symétriques.

Le premier exemple d’opérade est I'opérade des endomorphismes Endy associé a
un dg K-module V. Cette opérade est définie par Endy (n) = Hom(V®", V) pour tout
n >0, ou la i-eme composition de f € Endy (p) par g € Endy (g) est définie par

(foig)(n1 @ ®Upyg1) = (1 @V 1RG(ViR D Vg 1) BVitq @+ @Vpyg 1)

pour tout vy,...,Vppq—1 € V.

Pour P une opérade, une P-algebre est un dg K-module A muni de morphismes

Pln) @ A" — A

X1
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compatibles avec la composition opéradique de P. Les éléments de p € P(n) sont donc
vus comme des applications de A®" vers A. Se donner une structure de P-algebre sur
A revient ainsi a se donner un morphisme d’opérades P — End4.

Ce formalisme permet de retrouver de nombreuses structures algébriques classiques.
Par exemple, il existe une opérade Com qui gouverne les algebres associatives et com-
mutatives, une opérade As qui gouverne les algebres associatives, une opérade Lie qui
gouverne les algebres de Lie...

Dans cette these, nous aurons souvent besoin de donner un sens a des somines
infinies pouvant notamment apparaitre dans certaines équations de Maurer-Cartan.
Nous utiliserons pour cela une notion de P-algebre compléte que nous formons dans
une catégorie de dg K-modules filtrés complets. Une filtration sur un dg K-module V/
est une suite de dg K-modules (F,V),>1 telle que

- CHRVCF,,,VC---CRHV=V.

La complétion de V pour cette filtration est définie par Vo= lim,>; V/F,V. Le dg
K-module V' est dit complet pour sa filtration si V ~ V. En particulier, pour tout dg
K-module V' muni d’une filtration, la complétion V' est complet. Si W est un autre dg
K-module, le produit tensoriel V' ® W au-dessus de K est aussi muni d’une filtration
définie par
F,(VveWw)=  FVeFW
ptqg=n

En général, méme si V et W sont complets pour leur filtration, le produit tensoriel V ®
W n’est pas complet. On définit alors le produit tensoriel complet par VW := m,
en considérant la filtration sur V @ W définie précédemment. Une P-algebre complete
est ainsi une P-algebre telle que, pour tout p € P(n), le morphisme V" — V induit
par p préserve les filtrations de V®" et V.

Espace d’applications simplicial

La notion d’espace simplicial d’applications est définie dans un contexte général.
L’idée est de formaliser des propriétés qui refletent un modele simplicial des espaces
d’applications en topologie. Dans tout ce qui suit, nous utilisons I’expression ”espace
d’application” pour "espace d’application simplicial” puisque nous utiliserons unique-
ment cette version simpliciale de la notion d’espace d’application.

La catégorie des espaces topologiques T op est munie d'un foncteur Map,,(—, —) :
Top® x Top — sSet qui confere a 7T op une structure de catégorie enrichie sur la
catégorie des ensembles simpliciaux. Ce foncteur peut étre utilisé pour encoder des
notions d’homotopie supérieures dans la catégorie T op. Pour tout espaces topologiques
X, Y, les composantes connexes de Map,,(X,Y) sont en bijection avec les classes de
morphismes X — Y pour la relation d’homotopie, tandis que les groupes d’homo-
topies encodent des relations d’homotopie supérieures. Cette approche nous permet
d’utiliser des outils issues de la topologie algébrique afin d’étudier les morphismes a
homotopie pres dans T op.
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L’ensemble simplicial Map,(X,Y") est défini de la fagon suivante. Pour tout X € Top,
on définit deux foncteurs X ® — : sSet — Top et X~ : sSet”” — Top par

X®K:=Xx|K| ; X&:=Morr,(K|, X),

pour tout K € sSet, ou |K| désigne la réalisation géométrique de 1’ensemble simplicial
K. Pour tout X, Y € Top et K € sSet, nous avons 'isomorphisme

Mor7,,(X ® K,Y) == Mory,, (X, Y’).

On pose alors Mapr,,(X,Y) = Mory,,(X ® A*,Y), o, pour tout n > 0, nous
désignons par A" le n-simplexe fondamental.

Dans une catégorie de modele C' quelconque, il est possible de généraliser partielle-
ment ces résultats. Pour tout objets X,Y € C| il existe un objet cosimplicial X @ A*®
appelé repere cosimplicial associé & X et un objet simplicial Y2" appelé repere simplicial
associé & Y tels que les deux ensembles simpliciaux Morg(X ® A®,Y) et Morg(X,Y2%)
soient des complexes de Kan reliés par un zig-zag d’équivalences faibles. On peut définir
un ensemble simplicial par Map(X,Y) = Morg(X ® A®,Y), ou de fagon équivalente
par Mapq(X,Y) = Morg(X, Y2"), de sorte qu’on ait & nouveau une bijection entre ses
composantes connexes et les classes d’homotopie de morphismes X — Y.

Nous nous intéressons au cas ou C' est la catégorie des opérades non symétriques,
ou la catégorie des opérades symétriques connexes. Dans ce cas, I'objet simplicial
Mapp,(Q, P) permet une compréhension fine des morphismes d’opérades de Q vers P
a homotopie pres. La principale motivation pour ’étude de ces objets dans la catégorie
des opérades est que si P = Endy,, alors I'espace Mapop(Q, Endy) détermine I'homo-
topie d’un espace de module des structures de Q-algebres sur V.

Etat de I’art en caractéristique nulle

Soit @ = B¢(C) la construction cobar d’une coopérade C coaugmentée telle que
C(0) = 0. L’étude du type d’homotopie de Mapsp,0(B°(C),P) est déja connue dans
le cas ou K est un corps de caractéristique nulle. Le calcul des groupes d’homotopie a
notamment été effectué dans [Yall6], dans le cas propéradique, en utilisant un repére
simplicial explicite associé a P. Ce repere simplicial explicite est défini par

PAT =P QA%

ou, pour tout n > 0, le dg K-module Q*(A™) désigne 1'algebre de Sullivan des formes
polynomiales de de Rham sur A™ (voir par exemple [BG76, §2.1]). Nous obtenons alors

MapZOpO (BC(C)7 P) = MorEOp(Q7 PA.)'

Les n-simplexes de Mapsp,0(B°(C), P) sont donc identifiés a des éléments de
Homsgeq, (C, f)@)ﬁ*_(A”) satisfaisant certaines équations, oll C est le coidéal de coaug-
mentation de C et P I'idéal d’augmentation de P.
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Ces équations, appelées équations de Maurer-Cartan, peuvent étre décrites en uti-
lisant une structure d’algebre de Lie sur Homggeq, (C, P)®Q*(A™). Cette structure
d’algebre de Lie peut étre déduite par une structure d’algebre pré-Lie sur Homygeq, (C,P).
Voici les détails de cette construction.

Rappelons que si L est une algebre de Lie complete, alors un élément de Maurer-
Cartan est un élément 7 € L_; tel que

1[7’, 7] =0.

d(t) + 5

On note MC(L) l'ensemble des éléments de Maurer-Cartan de L. Tout élément de
Maurer-Cartan 7 € MC(L) induit une différentielle d, sur L définie par

d.(z) = d(z) + [, z]

pour tout x € L. On désigne par L7 le dg K-module L muni de la différentielle d,.
En utilisant la structure d’algebre commutative de Q*(A™) pour tout n > 0, on peut
munir le dg K-module L&Q*(A") d'une structure d’algebre de Lie complete. On définit
alors I'ensemble de Maurer-Cartan simplicial associé a L par

MCJ(L) = MC(LRY*(A®)).

Les algebres pré-Lie sont des cas particuliers d’algebres de Lie. Une algebre pré-Lie
est un dg K-module L munie d’une opération x : L ® L — L telle que

(zxy)*z—zx(y*z)= (D) ((z%2) %y —z % (2%y))
pour tout x,y, 2z € L. Le crochet de Lie induit par la structure pré-Lie est donné par
2,y = zxy — (1) 5z
La structure d’algebre pré-Lie de Homsgeq, (C,P) est donnée par une composition

f*g C —)CO(l)Cﬂ']_DO(l)']_D&),P

pour tout f,g € HomgSqu(a7 P), ot Ay, o) et vy désignent les composantes in-
finitésimales de structures de composition opéradiques et coopéradiques (voir [LV12,
§6.4.4]).

On a une bijection entre les morphismes d’opérades B¢(C) — PA" et les éléments
de Maurer-Cartan de Homygeq, (C, P)®€2*(A") pour tout n > 0, de sorte que

MapEOpo (Bc(c)a P) = MC' (HomZSqu (Ea 7_3))

Le calcul des groupes d’homotopie de Mapgp,0(B°(C),P) peut ainsi étre effectué
via le calcul général des groupes d’homotopies de MC,(L) associé a une algebre de Lie
L (voir [Ber15, Theorem 1.1]). Explicitement, pour tout & > 0 et pour tout 7 € MC(L),

Tra1(MCo(L), ) =~ Hy(L7),
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ot Hy(L™) est muni de la structure de groupe donnée par la formule de Baker-Campbell-
Hausdorff.

Le calcul des composantes connexes de Mapyg,0(5°(C), P) peut s’effectuer de la fagon
suivante. On utilise d’abord I'identification formelle

71-(]]~\/-[ap2(9po (BC(C)J P) - MOIEOPO (BC<C)7 P)/ ~

oll ~ désigne la relation d’équivalence d’homotopie dans la catégorie de modeles Op®
(voir [Frel7b, Theorem 3.2.14]). Le calcul du membre de droite peut étre effectué en
utilisant la théorie de la déformation pré-Lie construite dans [DSV16] qui généralise
celle des algebres de Lie. Explicitement, un élément de Maurer-Cartan 7 dans une
algebre pré-Lie L est un élément 7 € L_; tel que

d(t)+7+7=0.

Le groupe de jauge (Lo, BC'H,0) peut également étre décrit en termes d’opérations pré-
Lie. Considérons le sous-ensemble 1+ Ly C K& L. Sous des hypotheses de convergence,
on définit le produit circulaire ® : L ® (1 + Ly) — L par

1
x@(1+y)=Z;x{y,---,y},

n>0 n

pour tout © € L et y € Loy, ou nous désignons par —{—, ..., —} les opérations brace
symétriques dans 'algebre pré-Lie L (voir [OG08] ou [LMO05]). Nous pouvons restreindre
ce produit circulaire en une opération sur 1 + Ly définie par

(1+x)@(1+y)=1+y+Z%x{y,...,y}

n>0 n

pour tout x,y € Lg. Alors le triplet (1 + Ly, ®, 1) est un groupe qui est isomorphe au
groupe de jauge (voir [DSV16, Théoreme 2]). Le groupe (1 + Ly, ®, 1) agit également
sur MC(L) via la formule

(I4p) 7=F+px7—dp)© 1 +p ™"

pour tout u € Ly et 7 € MC(L). On définit alors le groupoide de Deligne, noté
Deligne(L), comme étant la catégorie ayant MC(L) pour ensemble d’objets, et les
éléments de 1 4+ Ly en tant que morphismes.

Rappelons que B¢(C), pour une coopérade coaugmentée C, est I'opérade définie par
Be(C) = (F(X7'C),0) on nous appliquons le foncteur des opérades libres F sur la
désuspension du coidéal de coaugmentation de notre coopérade C, et 0 est une dérivation
déterminée par les coproduits de composition partielles de C, qui est ajouté a la
différentielle interne de C afin de produire la différentielle de B¢(C). La relation d’ho-
motopie de morphismes de B¢(C) vers P est déterminée a l'aide de l'objet cylindre
explicite associé a B(C) fourni par [Frel7b, Theorem 3.2.14]. On a une dérivation
tordue explicite 0 sur F(X7IC @ N,(A!)) telle que

B(C) ® A' := (F(X'C® N.(AY)),0)
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est un objet cylindre associé¢ a B¢(C), ot N,(A!) est le complexe de chaines normalisé
associé a l'ensemble simplicial A!. En écrivant la relation de commutation avec la
différentielle 9, on trouve que se donner une homotopie d’un morphisme f : B°(C) —
P vers un autre morphisme g : BS(C) — P est équivalent au fait que les éléments
de Homygeq, (C,P) correspondant & f et g sont dans la méme orbite sous I'action du
groupe de jauge de Homysgeq, (C, P) (voir [DSV16, Corollary 2]). On obtient alors une
bijection
ToMapy,p,0 (B(C), P) ~ moDeligne(Homgseq, (C, P))

ou le membre de droite désigne I'ensemble des classes d’isomorphismes du groupoide
Deligne(Homssgeq, (C, P)).

Obstacles en caractéristique positive et idées de la
these

Le but de cette these est de généraliser cette approche a la caractéristique posi-
tive. Plusieurs problemes apparaissent lorsque nous considérons un anneau K de ca-
ractéristique positive.

Premierement, tous les calculs précédents (plus particulierement pour le calcul des
composantes connexes) utilise des coefficients rationnels. Nous proposons d’utiliser des
(généralisations) de puissances divisées afin de maitriser les dénominateurs non triviaux
qui apparaissent dans les formules. Par exemple, dans le chapitre 1, nous utilisons des
structures a puissances divisées sur les algebres pré-Lie afin d’effectuer le calcul des
composantes connexes de Mapgp,(B°(C),P). Dans le chapitre 2, nous utilisons des
structures de puissances divisées sur les algebres pré-Lie a homotopie pres afin d’effec-
tuer le calcul des groupes d’homotopie de Mape,(B¢(C),P).

Deuxiemement, le repere simplicial P2° = P ® Q*(A®), que nous utilisons afin
de calculer les groupes d’homotopie, n’est plus un repere simplicial lorsque K est un
corps de caractéristique positive. Entre autre, ceci provient du fait que la cohomologie
de 2*(A®) est non nulle lorsque le corps de base est de caractéristique positive. Dans
le chapitre 2, dans le cas des opérades non symétriques, nous construisons a la place
un repere cosimplicial B¢(C) ® A® associé a la construction cobar d’une coopérade
coaugmentée non symétrique C. Nous utilisons ce repere cosimplicial explicite afin de
calculer Map,,(B¢(C), P).

Résultats du chapitre 1

La théorie de la déformation développée dans [DSV16] ne permet pas d’identifier
ToMapyp,0(B¢(C), P) avec les classes d’isomorphismes d'un groupoide de Deligne si
char(K) > 0, puisque les formules définissant le groupe de jauge associé a une algebre
pré-Lie L, et son action sur les éléments de Maurer-Cartan, font intervenir des formules
avec des coefficients rationnels.
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Dans ce premier chapitre, nous développons une théorie de la déformation généralisant
la théorie de la déformation controlée par des algebres pré-Lie construite dans [DSV16]
sur un corps de caractéristique positive, et 'appliquons au calcul de moMapsy,,0 (B<(C),P).
L’idée est de généraliser cette théorie de la déformation en utilisant des algebre pré-Lie
a puissances divisées.

La notion de P-algebre a puissances divisées a été introduite par Fresse dans [Fre00],
ou P est une opérade telle que P(0) = 0. Se donner une structure de P-algebre sur V'
est équivalent & se donner une structure d’algebre sur la monade S(P, —) : dgMody —
dgMody appelée foncteur de Schur définie par

S(P,V) = @P(n) R, VO

n>0

ol nous considérons laction diagonale de ¥, sur P(n) ® V" donnée par son action
sur P(n) et son action par permutations des facteurs sur V" et ou ®y, désigne un
module de coinvariants pour cette action diagonale. Si P(0) = 0, alors le foncteur
analogue donné par des invariants

L(P,V):= P P(n) ™ ver

n>1

admet également une structure de monade (voir [Fre00, §1.1.18]). Dans ce cas, on a un
morphisme de monades

Tr:S(P,—) — T'(P,—)

donné par le morphisme trace usuel allant des coinvariants vers les invariants, lorsqu’on
considere l'action de X, sur P(n) ® V& pour tout n > 1. Une P-algebre a puissances
divisées est un dg K-module muni d’une structure d’algebre sur la monade I'(P, —).
En particulier, toute P-algebre a puissances divisées est munie d’une structure de P-
algebre induite par le morphisme 7'r.

La notion d’algebre pré-Lie a puissances divisées (ou I'(PreLie, —)-algebre) a été
étudiée par Césaro dans [Cesl8], dans la catégorie des K-modules non gradués. L’au-
teur montre en particulier que toute algebre pré-Lie a puissances divisées est munie

d’opérations braces a poids —{—,..., =}, .., définies pour toute collection d’entiers
ri,...,rn > 0, qui satisfont des formules similaires aux opérations
1
x{ylv oo 7yn}T1,~-,7"n = 'x{ylv e Yy Yny e 7yn}
Hi ! N—— —_—
71 T'n

dans une algebre pré-Lie sur un corps de caractéristique nulle (voir [Ces18, Propositions
5.9-5.10] pour une liste précise de ces formules).

Toute dg algebre pré-Lie a puissances divisées est munie d’opérations brace a poids
—{—, ..., =}, similaires qui satisfont des versions graduées des formule satisfaites
par les braces a poids dans le cas non gradué. Dans le cas gradué, nous avons un
analogue de 1’équation de Maurer-Cartan :

d(z) + z{x}, = 0.
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Sous des hypotheses de convergence, nous définissons le produit circulaire par

a® (1+b) =) afb},

n>0

pour tout @ € L et b € L°, et montrons que ceci induit une structure de groupe sur
1+ L Ce groupe est appelé le groupe de jauge associé¢ & L. Comme sur un corps de
caractéristique nulle, nous montrons que ce groupe agit sur les éléments de Maurer-
Cartan.

Théoréme A. Soit K un anneau.

— Pour toute dg algébre pré-Lie a puissances divisées complete, le produit circulaire
confére une structure de groupe a 1+ L° appelé groupe de jauge.

— Soit d la différentielle de L. Alors le groupe de jauge agit sur les éléments de
Maurer-Cartan par

(1+p) o= (a+p{at —d(p)© (1 +p)°"

pour tout p € LY, o € MC(L).

Nous montrons également que cette nouvelle théorie de la déformation satisfait
un analogue au théoreme de Goldman-Millson ([GMS8S8, §2.4]). Soit Deligne(L, A) le
groupoide de Deligne de la dg algebre pré-Lie a puissances divisées L ® m4, ou L est
une dg algebre pré-Lie a puissances divisées et m 4 'idéal maximal d’une algebre locale
artiniene A au-dessus du corps de fraction K de K. Nous avons le résultat suivant.

Théoreme B. Soit K un anneau noethérien intégre et K son corps de fractions. Soit L
et L deuz T'(PreLie, —)-algébres positivement graduées. Soit p : L — L un morphisme
de T'(PreLie, —)-algebre tel que H°(p) et H'(p) sont des isomorphismes et H?(ip)
un monomorphisme. Alors pour toute K-algebre locale artiniene A, le foncteur induit
¢, : Deligne(L, A) — Deligne(L, A) est une équivalence de groupoides.

La principale motivation de 'approche développée dans ce chapitre est que le dg K-
module Homygeq, (C, P) admet une structure de dg algebre pré-Lie a puissances divisées.
Nous obtenons alors le résultat suivant.

Théoréeme C. Soit K un corps. Soit C est une coopérade Y.-cofibrante coaugmentée
et P une opérade augmentée. Nous avons alors une bijection

ToMapsp,0 (B°(C), P) = moDeligne(Homsgeq, (C,P)),
ot moDeligne(Homygeq, (C,P)) désigne I’ensemble des classes d’isomorphismes du groupoide

de Deligne.

Résultats du chapitre 2

Le calcul des groupes d’homotopies de Mapge,0(B¢(C), P) effectué dans [Yal16] uti-
lise un repere simplicial explicite P2" = P®Q*(A®). Cependant, ce repeére simplicial ne
satisfait plus de bonnes propriétés homotopiques si la caractéristique de K est différente
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de 0. Ceci provient, entre autre, du fait que la cohomologie de Q*(A™) n’est pas réduite
a 0 pour tout n > 0.

Le but de ce chapitre est de décrire Mapgopo (B¢(C), P) par des équations de Maurer-
Cartan, et de généraliser les résultats obtenus pour le calcul du 7y dans le chapitre 1.
Nous traitons principalement le cas des opérades non-symétriques, et expliquons en-
suite comment généraliser au cas symétrique.

Puisque nous n’avons plus de repere simplicial explicite, nous utilisons un repere
cosimplicial B(C)® A® associé a la construction cobar d’une coopérade non-symétrique
coaugmentée C afin de calculer Mapg,,(B¢(C), P). Pour tout n > 0, nous construisons
une dérivation tordue explicite 9" sur 1'opérade libre F(C @ 71N, (A")) telle que

B(C) ® A® = (F(C® S7'N.(A*)), ")

est un repere cosimplicial associé a B°(C). La raison de ce choix pour ce repere co-
simplicial est que ’ensemble cosimplicial M ® A® := M ® N,(A®) définit un repere
cosimplicial dans la catégorie des suites de dg K-modules, puisque N,(A®) est contrac-
tile.

Ainsi, les éléments de Morp,(B¢(C) ® A™, P) sont en correspondance bijective avec
les éléments de SHomgeq, (C,P) ® N*(A™) qui satisfont certaines équations. Notre but
est d'interpréter ces équations comme des équations de Maurer-Cartan. Nos princi-
pales idées sont les suivantes. Nous utilisons des structures de I'(PreLies,, —)-algebre,
ou PreLie, est une opérade qui controle les algebres pré-Lie a homotopie pres. Nous
verrons que nous pouvons étendre les équations de Maurer-Cartan aux I'(PreLieq,, —)-
algebres. Le point clé est donc que si A est une algebre brace et N une algebre sous
l'opérade de Barratt-Eccles &, alors A ® N est une I'(PreLies,, —)-algebre. En uti-
lisant ce résultat avec A = Homgeq, (C,P), qui est une algebre brace d’apres [LV12,
Proposition 6.4.2] et [GV95, Proposition 1], et N = N*(A™), on obtient précisément
les équations recherchées. Voici la mise en ceuvre détaillée de ces idées.

Les PreLieo-algebres, aussi appelées algebres pré-Lie a homotopie pres, on été
étudiées dans [CLO1]. Les auteurs montrent que se donner une structure d’algebre pré-
Lie a homotopie est équivalent a se donner des opérations brace qui satisfont certaines
équations. Nous désignons ces opérations par —{—, ..., —] dans cette these, et nous
adoptons la convention que ces opérations sont définies sur L. En suivant le méme
schéma de raisonnement que dans [Cesl8] pour l’étude de la monade I'(PreLie, —),
nous montrons que se donner une structure de I'(PreLie.,, —)-algebre sur L est équivalent

a se donner des opérations braces a poids —{—, ..., —[},, .., définies pour toute col-
lection d’entiers rq,...,r, > 0 sur la suspension XL, qui sont similaires aux opérations
1
xﬂyb e 7an}’r‘1,...,Tn = ‘x{[yla e ,3/17 e 7yna e >Z/n]}
Hi Tl N—— —_——
1 Tn

Nous donnons également une autre caractérisation de cette structure, qui donnera un
sens naturel a la notion de co-morphisme. Soit

TPerm(V) = PV ® (Vo)™

n>0
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Nous montrons que, pour tout K-module gradué V', cet espace est muni d'un copro-
duit Arperm qui généralise le coproduit défini dans [CLO1, Lemme 2.3] sur Perm®(V') =
V®S(V). Nous définissons alors la catégorie 'AP L, formée des couples (V, Q) tels que
V' est un K-module gradué et ) une codérivation sur I'Perm®(V') de degré —1 telle que
Q? = 0. Un morphisme dans TAPL,, aussi appelé oo-morphisme, est un morphisme
de cogebres qui préserve les codérivations. On prouve que L est muni d’une structure
de I'(PreLies,, —)-algebre si et seulement si XL € TAPL.

On peut également définir une notion d’élément de Maurer-Cartan dans une 'APL .-
algebre, sous certaines hypotheses de convergence que nous détaillons dans ce chapitre.
Cette hypothese de convergence permet de donner un sens a I’équation dite de Maurer-
Cartan

d(z) + Z:c{[:z:]}n =0,
n>1
ou z est un élément de degré 0 d’'une 'APL-algebre V. La catégorie des TAPL .-
algebres satisfaisant cette hypothese de convergence est notée Fmoo. On note MC(V)
I’ensemble des éléments, dits de Maurer-Cartan, qui satisfont 1’équation de Maurer-
Cartan. On prouve que tout co-morphisme ¢ : V. — V' entre deux FA/PTOO—algébres
induit une application MC(¢) : MC(V) — MC(V") de sorte que MC : TAPL,, —>

Set soit un foncteur.

Théoréme D. Soit Brace l'opérade des algebres brace (voir [Cha02, Proposition 2]).
1l existe un morphisme d’opérades PreLie,, — Brace ® £ qui rend le diagramme
H

sutvant commutatif :

Prelie,, —— Brace ® €

l H
Prelie ——— Brace

Puisque l'action de %, sur Brace(n) ® £(n) est libre, Théoreme D implique que toute
Brace ® E-algebre L est une I'(PreLies,, —)-algebre via la composée
H

[(Prelies, L) — T(Brace ® €, L) «+—— S(Brace ® £, L) — L.
H H

En utilisant que le complexe de cochaines normalisé N*(X') d'un ensemble simplicial
X est muni d'une structure d’algebre sous 'opérade de Barratt-Eccles (voir [BF04]) et
Théoreme D, on définit ’ensemble de Maurer-Cartan simplicial associé a une algebre
brace complete A par
MC.(A) .= MC(A® EN"(A®)).

En particulier, les sommets sont identifiés aux éléments de Maurer-Cartan de A, lors-
qu’on utilise sa structure de I'(PreLie, —)-algebre sous-jacente (voir [Ver23, Theo-
rem 2.15]). Nous calculons explicitement ’ensemble des composantes connexes et les
groupes d’homotopie d’un tel ensemble simplicial. Rappelons pour cela que si A est
une algebre brace complete, alors tout élément de Maurer-Cartan 7 € MC(A) induit
une différentielle notée d, et définie par

d.(z) =d(z) + 7(x) — (—1)‘x|x(7>.
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On notera A7 le dg K-module A munie de la différentielle d,.. Nous avons le théoreme
suivant.

Théoreme E. Pour toute algébre brace compléte A, l'ensemble simplicial MCq(A)
est un compleze de Kan. De plus, pour tout 7 € MC(A), nous avons les bijection et
1somorphismes suivants.

— mo(MC(A)) ~ meDeligne(A);

— m(MCe(A),7) ~{h €Ay | dh) =7+ h{r) =T (1+h)}/ ~,,
ot ~, est la relation d’équivalence suivante : h ~, h' si et seulement si il existe
Y € Ay tel que

h=n =d)+ o)+ > r(h,.. b 1K),

0,920 p q

— m(MCu(A), ) = (Hi (A7), %7)

ol *, est la structure de groupe suivante sur Hy(A") :
(] s (W] = g4+ (s 1))
— Vn >3, mp1(MCo(A), 7) ~ H,(AT).

Nous avons le résultat d’invariance homotopique suivant, qui étend le théoreme de
Goldman-Millson en dimension 0.

Théoréme F. Soit © : A — B un morphisme d’algébres brace complétes tel que ©
est une équivalence faible dans dgMody. Alors MCe(O) : MCe(A) —> MC4(B) est
une équivalence faible d’ensembles simpliciauz.

Nous utilisons cette nouvelle notion d’ensemble de Maurer-Cartan simplicial pour
I’étude de I'homotopie d’espaces d’applications dans la catégorie des opérades non
symétriques. Pour tout n > 0, et pour toute coopérade coaugmentée non symétrique C
telle que C(0) = 0, nous construisons une dérivation tordue 9" sur F(C ® LN, (A"))
telle que 'opérade cosimpliciale

BY(C) @ A®* := (F(C® X T'N.(A®)),0%)
soit un repere cosimplicial associé a B¢(C). Ceci meéne au théoréme suivant.

Théoreme G. Soit C une coopérade coaugmentée non symétrique et P une opérade
augmentée non symétrique telles que C(0) = P(0) =0 et C(1) = P(1) = K. Nous avons
lisomorphisme suivant d’ensembles simpliciauz :

Mapg, (B°(C), P) ~ MC.(Homgeq, (C, P)).

Le calcul des composantes connexes et des groupes d’homotopies de Map,,(B(C), P)
peuvent alors étre effectués en utilisant Théoreme E.

Dans le cas symétrique, la dérivation 0" précédemment construite sur F(CRX ' N, (A"))
ne préserve pas ’action des groupes symétriques pour tout n > 2. Nous considérons un
remplacement 3,-cofibrant de B¢(C) donné par Iéquivalence faible B¢(C ® Surg) —

H
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B¢(C), ot Surk désigne la coopérade des surjections définie dans [BCN23, Theorem

A.1]. En utilisant que 'action de ¥, sur C(n)®Surk(n) est libre pour tout n > 1, nous

construisons une dérivation tordue 9" sur F(C ® Surk ® X' N,(A™)) pour tout n > 0
H

telle que o
B(C & Surk) ® A* = (F(C® Surc & YTIN(A®)), %)

u
est un repere cosimplicial associé a B(C ® Surg). Nous en déduisons le théoreme
H

suivant.

Théoreme H. Soit C une coopérade symétrique coaugmentée et P une opérade symétrique
augmentée telles que C(0) = P(0) = 0 et C(1) = P(1) = K. Alors YHomygeq, (C ®
H

Surk ® N,(A®),P) est munie d’une structure de F/ﬁﬁ\oo-algébre telle que nous avons
un isomorphisme d’ensembles simpliciaux

Mapgopo(Bc(C), P) ~ MC(XHomygeq, C % Surk ® N,(A®),P)),

ot Map¥,,0(B%(C), P) := Mapy,0 (B*(C %) Surk), P).

Organisation de la these

Cette these est composée de deux chapitres rédigés en anglais :

e Le chapitre 1, qui est une version sans modification de l'article Pre-Lie algebras
with divided powers and the Deligne groupoid in positive characteristic [Ver23] a
paraitre dans la revue Algebraic and Geometric Topology,

e Le chapitre 2, qui fait suite au chapitre 1 et qui servira de base pour un mémoire
ultérieur,

et d’'une annexe qui fournit des rappels détaillés sur la théorie des opérades.

Conventions générales

Dans cette these, nous utilisons des K-modules différentielles graduées (ou dg K-
modules) sur un anneau K.

Dans le chapitre 1, nous adoptons des conventions cohomologiques, car nous sou-
haitons généraliser des résultats exprimés dans ce contexte dans la littérature. Dans
ce contexte, un dg K-module est un K-module V' muni d’une décomposition en somme
directe de sous-modules V' ~ @, ., V" et équipé d'une différentielle d : V' — V telle
que d(V™) C V™! pour tout n € Z et d* = 0.

Dans le chapitre 2, nous adoptons des conventions homologiques afin de donner des
applications en théorie de I’homotopie. Dans ce contexte, un dg K-module est un K-
module V' muni d’une décomposition en somme directe de sous-modules V ~ @, ., V,
et équipé d'une différentielle d : V- — V telle que d(V,,) C V,,_1 pour tout n € Z et
d* = 0.
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Rappelons que nous avons une équivalence entre ces deux notions. Plus précisément,
soit V ~ €, .V, un dg K-module de différentielle d en convention homologique. Si
nous posons V" := V_,, pour tout n € Z, alors V ~ @, , V" et d(V") C V" pour
tout n € Z.

Un morphisme de dg K-modules est un morphisme de K-modules f : V — W qui
préserve la graduation, de sorte que f(V,,) C W, pour tout n € Z (en convention ho-
mologique), et les différentielles de sorte que fd = df. Nous notons la catégorie des dg
K-modules dgMody avec la convention de graduation (homologique ou cohomologique)
fixée par le contexte.

Nous utilisons que la catégorie des dg K-modules est équipée d’une structure de
catégorie monoidale symétrique. En convention homologique, si V ~ @, ., V, et W ~
P,,c2 W, sont des dg K-modules, alors leur produit tensoriel VW := V @k W est aussi
un dg K-module avec (Ve@W), ~ @, ,_, Vo®W, pour tout n € Z. La différentielle de
V@ W est défini par d(v@w) = d(v) @ w+ (—1)Pv ® d(w) pour tout v € V,, et w € W.
L’opérateur de symétrie 7: V@ W — W ®@ V est définie par 7(z @ y) = (=1)PMy @z
pour tout x € V, et y € W,. Dans tout ce qui suit, nous adoptons la notation £
pour les signes que nous obtenons en appliquant cet opérateur. La regle générale (la
regle de Koszul) est que toute permutation de facteurs zy — yx dans une expression
multiplicative dans un dg K-module produit un signe + = (—1)?? ou p est le degré de
x et q le degré de y.
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In this thesis, we study the homotopy of mapping spaces associated to operads
defined over a field of positive characteristic.

Operads and algebras over operads

The notion of an operad has been introduced in order to define categories of alge-
bras governed by operations. This notion has first been introduced for the study of
loop spaces (see [May06]). Operads are now used in various branchs of mathematics.

For our purpose, we consider operads that are defined, generally, in a category of
differential graded modules over a fixed ground ring K (the category of dg K-modules
for short). Fundamental examples of operads are defined in a category of modules. We
can regard these operads as operads in dg K-modules concentrated in degree zero. We
work in the category of dg K-modules in order to do homology theory and to address
applications in homotopy theory.

In this setting, an operad is a sequence of dg K-modules (P(n)), such that, for
every n > 0, the dg module P(n) is endowed with an action over the symmetric group
on n letters X,,, and we have partial composition operations

o;: P(n) @ P(m) — P(n+m—1)

for every 1 < ¢ < n, which satisfy associativity, unit and equivariance axioms. For
every p € P(n) and ¢ € P(m), the operation p o; ¢ represents the insertion of the
operation ¢ in the i-th input of p. An operad morphism P — Q is a sequence of
morphisms P(n) — Q(n) which preserve the operadic compositions of P and Q and
the action of the symmetric groups.

The first example of an operad is the endomorphism operad Endy associated to a
dg K-module V. This operad is defined by Endy (n) = Hom(V®" V) for every n > 0,
where the i-th composition of f € Endy(p) and g € Endy (q) is defined by

(foig)(1®-- '®Up+q—1) =+f(11® - QU 109(V1®-- '®Ui+q_1)®"0i+q®' : '®Up+q_1)

for every vq,...,vp1q-1 € V.

For P an operad, a P-algebra is a dg K-module A endowed with morphisms
P(n) @ A®" — A

XXV
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compatible with the operadic composition of P. The elements of P are then viewed
as morphisms A®" — A. Thus, giving a P-algebra structure on A is equivalent to
giving an operad morphism P — Endy,.

This formalism allows us to recover classical algebraic structures. For instance, there
is an operad Com, which governs associative and commutative algebras, an operad As,
which governs associative algebras, an operad Lie, which governs Lie algebras...

In this thesis, we often need to give a sense to infinite sums that can occur in some
Maurer-Cartan equations. To achieve this, we use a notion of a complete P-algebra,
which we form in a category of complete filtered dg K-modules. A filtration on a dg
K-module V is a sequence of dg K-modules (F,,V'),>1 such that

-CF,VCF, ., VC---CFV=V.

The completion of V' for this filtration is defined by Vo= lim,>; V/F,V. The dg K-

module V' is said to be complete for its underlying filtration if V' ~ V.. In particular,
for every dg K-module V' endowed with a filtration, the completion V' is complete. If
W is an other filtered dg K-module, the tensor product V ®@ W over K is also endowed
with a filtration defined by

F,(VeWw)= @ FVeFW

ptq=n

In general, even if V and W are complete for their underlying filtrations, the tensor
product V' ® W is not complete. We therefore define the complete tensor product
by VW := V/®\VV, when considering the above filtration on V' ® W. A complete
‘P-algebra is then a P-algebra endowed with a filtration for which it is complete and
such that, for every p € P(n), the morphism V®* — V induced by p preserves the
filtrations of V®™ and V.

Simplicial mapping spaces

The notion of a simplicial mapping space is defined in a very general framework.
The idea is to formalize properties that reflect a simplicial model of the mapping spaces
of topology. In what follows, we just use the phrase "mapping space” for ”simplicial
mapping space” since we only use this simplicial version of the notion of a mapping
space.

The category of topological spaces T op comes equipped with a functor

MapTop(—, —) : Top® x Top — sSet which makes Top a category enriched over the
category of simplicial sets. This functor can be used in order to encode notions of higher
homotopy in the category of Top. For every topological spaces X,Y, the connected
components of Mapr,,(X,Y’) are in bijection with the homotopy classes of morphisms
X — Y, while the homotopy groups encode higher homotopy relations. This approach
allows us to use tools from algebraic topology in order to study morphisms up to
homotopy in T op.
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The simplicial set Map,,(X,Y) is defined as follows. For every X € Top, we define
two functors X ® — : sSet — Top and X~ : sSet®”” — T op by

X®K:=Xx|K| ; X&:=Morr,(K|, X),

for every K € sSet, where | K| denotes the geometric realization of the simplicial set
K. For every X, Y € Top and K € sSet, we have the isomorphism

Mor7o, (X ® K,Y) =~ Mor,,(X, YF).

We thus set Map,,(X,Y") := Morr,(X ® A®)Y), where, for every n > 0, we denote
by A" the fundamental n-simplex.

In a general model category C, it is possible to partially generalize these results. For
every X,Y € C| there exists a cosimplicial object X ® A® called cosimplicial frame as-
sociated to X, and a simplicial object Y2" called simplicial frame associated to Y such
that the two simplicial sets Morg(X @ A®,Y) and Morg(X,Y2") are Kan complexes
related by a zig-zag of weak equivalences. We can define a simplicial set Map(X,Y)
by Mapo(X,Y) = Morg(X ®A®,Y), or equivalently by Map.(X,Y) = Morg (X, Y2"),
so that we still have a bijection between its connected components and the homotopy
classes of morphisms X — Y.

We are interested in the case where C' is either the category of non-symmetric
operads, or the category of connected symmetric operads. In these cases, the study
of the simplicial set Map,,(Q, P) allows us to have a better understanding of operad
morphisms @ — P up to homotopy. The motivation for the study of these objects in
the categories of operads is that if we set P = Endy, then the space Map,(Q, Endy )
determines the homotopy of a moduli space of Q-algebra structures on V.

State-of-the-art in characteristic 0

Let Q@ = B¢(C) be the cobar construction of a coaugmented cooperad C such
that C(0) = 0 and let P be an augmented operad. The study of the homotopy of
Mapsp,0 (B¢(C), P) is already known when K is of characteristic 0. The computation
of the homotopy groups has been addressed in [Yall6], in the properadic framework,
by using an explicit simplicial frame associated to P. This explicit simplicial frame is
defined by

PAT =P QA%

where, for every n > 0, the dg K-module Q*(A") denotes the Sullivan algebra of
polynomial de Rham forms on A”™ (see for instance [BG76, §2.1]). We then obtain
MapEOpO<BC<C)> P) = MOYEOP(Q, PA.)'

The n-simplices of Mapge,0(B°(C),P) are then identified with elements of the tensor
product Homsgeq, (C, f)@QKA”) which satisfy some equations, where C is the coaug-
mentation coideal of C and P the augmentation ideal of P.
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These equations, called Maurer-Cartan equations, can be described by using a Lie
algebra structure on Homsgeq, (C, P)@Q*(A™). This Lie algebra structure can be de-
duced from a pre-Lie algebra structure on Homsygeq, (C,P). Here are the details of this
construction.

Recall that if L is a complete Lie algebra, then a Maurer-Cartan element is an
element 7 € L_; such that

d(r) + %[T, 7] = 0.

We denote by MC(L) the set of Maurer-Cartan elements. Every Maurer-Cartan ele-
ment 7 € MC(L) induces a differential d, on L defined by

d.(z) = d(z) + [, x]

for every x € L. We denote by L™ the dg K-module L endowed with the differential
d,. By using the commutative algebra structure on Q*(A™) for every n > 0, we can
endow the dg K-module L&Q*(A") with the structure of a complete Lie algebra. We
then define the simplicial Maurer-Cartan set associated to L by

MC.(L) = MC(LRQ(A®)).

Pre-Lie algebras are examples of Lie algebras. A pre-Lie algebra is a dg K-module
L endowed with an operation x : . ® L, — L such that

(xxy)*z—ax(y*z)= (D) ((zx2) %y — 2% (2%y))
for every x,y,z € L. The Lie bracket induced by the pre-Lie structure is given by
2,y = w4y — (=) Wy 5z
The pre-Lie algebra structure of Homygeq, (C,P) is given by the composite

f*g C—)CO(I)C—I)%,]_DO(U,PL)P

for every f, g € Homsgeq, (C, P), where Ay y and 71y denote the infinitesimal com-
ponents of operadic and cooperadic composmon structures (see [LV12, §6.4.4]).

The result is that we have a bijection between the operad morphisms B °(C) — PA"
and the Maurer-Cartan elements of Homygeq, (C, P)@Q*(A™) for every n > 0, so that

Mapyp,0 (B°(C), P) = MCq4(Homsseq, (C, P)).

The computation of the homotopy groups of Maps,,0 (5¢(C), P) can then be achieved
by the general computation of the homotopy groups of the simplicial Maurer-Cartan
set MC,(L) associated to a Lie algebra L (see [Berl5, Theorem 1.1]). Explicitly, for
every k>0 and 7 € MC(L),

a1 (MCo(L), T) =~ Hy(LT),

where Hy(L") is endowed with the group structure given by the Baker-Campbell-
Hausdorff formula.
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The computation of the connected components of Mapyg,0(B¢(C), P) can be achieved
as follows. We first use the formal identification

WoMapzopO(Bc(C)aP) = MOTzOpO(BC<C)777)/ ~

where ~ denotes the homotopy equivalence relation in the model category XOp (see
[Frel7b, Theorem 3.2.14]). The computation of the right hand-side term can be made
by using the pre-Lie deformation theory developed in [DSV16] which generalizes the
Lie deformation theory. Explicitly, a Maurer-Cartan element 7 in a pre-Lie algebra L
is an element 7 € L_; such that

d(t)+7+7=0.

The gauge group (Lo, BCH,0) can also be described in terms of pre-Lie operations.
Consider the subset 1 + L° € K@ L. Under convergence hypothesis, we define the
circular product ©® : L ® (1 + Ly) — L by

1
w@(1+y)=Zgw{y,m,y},

n>0 n

for every x € L and y € Lo, where we denote by —{—, ..., —} the symmetric brace
operations in the pre-Lie algebra L (see [OGO08] or [LMO05]). We can restrict this circular
product to an operation on 1 4 L defined by

(1+x)@(1+y):1+y+Z%x{y,...,y}

n>0 n

for every x,y € Lg. Then the triple (1+ Ly, ®, 1) is a group which is isomorphic to the
gauge group (see [DSV16, Theorem 2|). The group (1 + Lg, ®, 1) also acts on MC(L)
via the formula

(Itp) 7= (T+pxt—dp)© (1 +u)~"

for every p € Ly and 7 € MC(L). We then define the Deligne groupoid, denoted by
Deligne(L), as the category with MC(L) as set objects, and the elements 1 + Ly as
morphisms.

Recall that B¢(C), for C is a coaugmented cooperad, is the dg-operad such that B¢(C) =
(F(£71C),0), where we take the free operad functor F on the desuspension of the
coaugmentation coideal of our cooperad C, and 0 a derivation, determined by the partial
composition coproducts of C, which is added to the internal differential of C to produce
the differential of B¢(C). The homotopy relation for morphisms B¢(C) — P can be
computed by using an explicit cylinder object associated to B¢(C) given in [Frel7b,
Theorem 3.2.14]. We have an explicit twisting derivation @ on F(X7!C ® N,(A')) such
that
B(C)® A' := (F(X7'C ® N.(AY)),0)

is a cylinder object associated to B¢(C), where N,(A') is the normalized cochain com-
plex associated to the simplicial set A'. By writing the commutation condition with
the differential 0, two morphisms f,g : B°(C) — P are related by a homotopy if
and only if their corresponding elements in MC(Homygeq, (C, P)) are in the same orbit
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under the action of the gauge group of Homygeq, (C, P) (see [DSV16, Corollary 2]). We
thus obtain a bijection

ToMapyp,0 (B(C), P) ~ moDeligne(Homyseq, (C, P))

where the right hand-side term denotes the set of isomorphism classes of the groupoid
Deligne(Homsgeq, (C, P)).

Issues in positive characteristic and idea of the thesis

The purpose of this thesis is to generalize this approach in positive characteristic.
Several issues occur when considering a ground ring K with positive characteristic.

First, all the above computations (especially for the computation of the connected
components) use rational coefficients. Our idea is to use (some generalized) divided
power operations in order to handle the non-trivial denominators that occur in the for-
mulas. For instance, in Chapter 1, we use divided power structures on pre-Lie algebras
in order to address the computation of the connected components of Maps,,,(B(C), P).
In Chapter 2, we use divided powers structures on pre-Lie algebras up to homotopy in
order to address the computation of the homotopy type of Map,,(B°(C), P).

Second, the simplicial frame P2° = P ® Q*(A*®), which we use in order to compute
the homotopy groups, is no longer a simplicial frame when K is a field with positive
characteristic. The reason is, among others, that the cohomology of Q2*(A®) is non-zero
when the ground field has a positive characteristic. In Chapter 2, in the framework of
non-symmetric operads, we instead define a cosimplicial frame B¢(C) ® A® associated
to the cobar construction of a non-symmetric coaugmented cooperad C. We use this
explicit cosimplicial frame in order to compute Map,,(B(C), P).

Results of Chapter 1

The deformation theory developed in [DSV16] does not allow us to identify
ToMapyp,0(B¢(C),P) with the set of isomorphism classes of a Deligne groupoid if
char(K) > 0, as the formulas which define the gauge group associated to a pre-Lie
algebra L, and its action of the Maurer-Cartan elements, are given by formulas with
rational coefficients.

In this first chapter, we develop a deformation theory which generalizes the defor-
mation theory controlled by pre-Lie algebras described in [DSV16] over a field with
positive characteristic, and apply this to the computation of moMapge,0(B(C),P).
Our idea is to use pre-Lie algebras with divided powers.

The notion of P-algebras with divided powers has been first introduced by Fresse
in [Fre00], where P is an operad such that P(0) = 0. Giving a P-algebra structure on
V' is equivalent to giving an algebra structure over the monad S(P, —) : dgMody —
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dgMod called the Schur functor and defined by

S(P.V) = Pn) @, Ve

n>0

where we consider the diagonal action of ¥, on P(n) ® V®" given by its action on
P(n) and its action on V®" given by the permutation of the factors, and ®y,, denotes
a module of coinvariants with respect to this diagonal action. If P(0) = 0, then the
analogous functor given by invariants

L(P,V):= P P(n) ™ ver

n>1

also admits the structure of a monad (see [Fre00, §1.1.18]). In this case, we have a
monad morphism

Tr:S(P,—) —T(P,—)

given by the usual trace map which starts from coinvariants to invariants, when con-
sidering the action of X,, on P(n) ® V& for every n > 1. A P-algebra with divided
powers is an algebra over the monad I'(P,—). In particular, every P-algebra with
divided powers is endowed with the structure of a P-algebra induced by the trace map.

The notion of a pre-Lie algebra with divided powers (or I'(PreLie, —)-algebra) has
been studied by Cesaro in [Ces18|. He showed in particular that every pre-Lie algebra

with divided powers comes equipped with weighted brace operations —{—, ..., =}, ..
for each collection of integers 71, ..., r, > 0, which satisfy similar identities as the quan-
tities )
x{ylﬂ e >yn}r1,...,7’n = Hl ri!z{yla e ayla cee 7yn7 s 7yn}
1 Tn

in a pre-Lie algebra over a field of characteristic 0 (see [Cesl8, Propositions 5.9-5.10]
for a precise list of these identities).

Every differential graded pre-Lie algebra with divided powers L comes equipped
with analogous weighted brace operations —{—,..., =}, ., which satisfy a graded
version of the identities satisfied by weighted braces in the non graded framework. In
this context, we have an analogue of the Maurer-Cartan equation:

d(z) +x{z} = 0.

With suitable convergence hypothesis, we also get that the circular product @ can be
written as

a@(l—i-b)zza{b}n

n>0

and gives rise to a group structure on 1 4+ L°. This group is called the gauge group
of L. As over a field with characteristic 0, we also show that this group acts on the
Maurer-Cartan set of L.

Theorem A. Let K be a ring.
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(i) In any complete differential graded pre-Lie algebra with divided powers L, the
circular product ®, defined as above, endows the set 14+ L° with a group structure.

(i1) If we denote by d the differential of L, then this group acts on the Maurer-Cartan
set via the formula

(1+p)-a=(a+p{ats —d(p) @ (1+ )~

We prove that this new deformation theory satisfies an analogue of the Goldman-
Millson theorem given in [GMS88, §2.4]. Let Deligne(L, A) be the Deligne groupoid of
the complete dg pre-Lie algebra with divided powers L ® m4, where L is a dg pre-Lie
algebra with divided powers and my the maximal ideal of a local artinian algebra A
over the field of fraction K of K. We precisely get the following result.

Theorem B. Let K be a noetherian integral domain and K its field of fractions. Let L
and L be two positively graded I'(PreLie, —)-algebras. Let ¢ : L — L be a morphism
of T(PreLie, —)-algebras such that H°(p) and H'(p) are isomorphisms and H?(p)
18 @ monomorphism. Then for every local artinian K-algebra A, the induced functor
¢, : Deligne(L, A) — Deligne(L, A) is an equivalence of groupoids.

The main motivation for the approach developed in this paper is that the dg module
Homygeq, (C, P) is endowed with the structure of a I'(PreLie, —)-algebra. We then
obtain the following.

Theorem C. LetK be a field. Suppose that C is a ¥ -cofibrant coaugmented dg cooperad
and P an augmented dg operad. We then have an isomorphism:

moMapyp,0 (B“(C), P) =~ moDeligne(Homyseq, (a 73))7

where moDeligne(Homygeq, (C,P)) denotes the set of isomorphism classes of the Deligne
groupoid.

Results of Chapter 2

The computation of the homotopy groups of Mapsep,e(B(C),P) done in [Yall6]
uses an explicit simplicial frame P2* = P ® Q*(A®). However, this explicit simplicial
frame no longer satisfies the right homotopical properties if char(K) # 0. This is be-
cause the cohomology of Q*(A™) is non zero for every n > 0.

The goal of this chapter is to compute Maply,0(B°(C),P) in terms of Maurer-
Cartan elements and to generalize the results obtained for 7y in Chapter 1. We mostly
deal with the case of non-symmetric operads, and explain the generalization to the
symmetric context afterwards.

As we no longer have an explicit simplicial frame, we use an explicit cosimplicial
frame B¢(C)®A* associated to the cobar construction of a coaugmented non-symmetric
cooperad C in order to compute Map,(B°(C), P). For every n > 0, we will explicitly
construct a twisting derivation 9" on the free operad F(C ® X' N,(A")) such that

B(C) ® A* = (F(C® 7IN,(A%)), 0°)
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is a cosimplicial frame associated to B¢(C). The reason for the choice of this cosim-
plicial frame is that the cosimplicial set M ® A®* = M ® N,(A®) defines a cosimplicial
frame in the category of sequences of dg K-modules, as N, (A®) is contractible.

Therefore, elements of Morp,(B°(C) ® A", P) are in bijective correspondence with
elements of YHomgeq, (C,P) ® N*(A™) which satisfy some equations. Our purpose is
to interpret these equations as Maurer-Cartan equations. Our main ideas are the fol-
lowing. We deal with I'(PreLie,, —)-algebra structures, where PreLie, is the operad
which governs pre-Lie algebras up to homotopy. We will see that we can extend the
Maurer-Cartan equations to I'(PreLies, )-algebras. Then, the key point is that if A is
a brace algebra and if N is an algebra over the Barratt-Eccles operad £, then A® N is
a ['(PreLies, —)-algebra. Using this result with A = Homgeq, (C, P), which is a brace
algebra by [LV12, Proposition 6.4.2] and [GV95, Proposition 1], and N = N*(A™) pre-
cisely give the desired equations. Here is the detailed implementation of these ideas.

The PreLliey-algebras, also called pre-Lie algebras up to homotopy, have been
studied in [CLO1]. The author characterized the data of a PreLie,-algebra structure
on L as the data of brace operations which satisfy some identities. We denote these
brace operations by —{—, ..., —] in this thesis, and we assume that these operations
are defined on the suspension L L. As for the study of the monad T'(PreLie, —) in
[Ces18], we prove that giving a I'(PreLie.,, —)-algebra structure on L is equivalent to
giving weighted brace operations —{—,..., —[},, .. on the suspension ¥L which are
similar to the operations

n

1
J7{Iy17 s 7yn]}r1,...,rn = x{[yh e Yy Yny e 7yn]}-
H ril Se—— —

i

T1 Tn

We give another characterization of such objects that will emphasize a notion of oo-
morphism. For any graded K-module V', we set

IPerm‘(V) = PV & (Ve

n>0

We prove that I'Perm®(V') is endowed with a coproduct Arpe, which, in some sense, is
compatible with the coproduct defined in [CLO1, Lemma 2.3] on Perm®(V') := V@S (V).
We then define the category 'APL,, formed by pairs (V, Q) where V is a graded K-
module and @ a coderivation on TPerm®(V) of degree —1 such that Q* = 0. A
morphism in 'APL, also called an oco-morphism, is a morphism of coalgebras which
preserve the coderivations. We prove that L is a I'(PreLies,, —)-algebra if and only if
YL e TAPL.

We can also define a notion of Maurer-Cartan elements in a I'APL.-algebra, un-
der some convergence hypothesis which we detail in this chapter. This convergence
hypothesis allows us to write the Maurer-Cartan equation

d(x)+ > z{a]. =0,

where z is a degree 0 element of some V' € T'APL,,. We denote by FA/PTOO the category
of TAPL.-algebras which satisfy the required convergence hypothesis. We denote by
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MC(V) the set of Maurer-Cartan elements. We prove that any co-morphism ¢ : V ~~
W induces a set map MC(¢) : MC(V) — MC(W) so that MC : TAPL,, — Set is

a functor.

Theorem D. Let Brace be the operad which governs brace algebras (see [Cha02, Propo-
sition 2f). There exists an operad morphism PreLlies,, — Brace ® € which fits in a
H
commutative square
Prelie., — Brace ® £

J/ H
PrelLie —— Brace

As the action of ¥, on Brace(n)®E&(n) is free for every n > 0, Theorem D implies that
every Brace ® E-algebra L is a I'(PreLie.,, —)-algebra, via the composite
H

[(PreLies, L) — T'(Brace ® €,L) +—— S(Brace ® £, L) — L.
H H

Using that the normalized cochain complex N*(X) of a simplicial set X admits the
structure of an algebra over the Barratt-Eccles operad (see [BF04]) and Theorem D,
we define the simplicial Maurer-Cartan set associated to a complete brace algebra A
as

MC.(A) = MC(A® SN*(A%)).

In particular, the vertices are identified with Maurer-Cartan elements in A, when using
its underlying I'(PreLie, —)-algebra structure (see [Ver23, Theorem 2.15]). We explic-
itly compute the connected components and the homotopy groups of MC,(A). Recall
that if A is a complete brace algebra, then every Maurer-Cartan element 7 € MC(A)
induces a differential denoted by d, and defined by

d.(z) =d(z) + 7(x) — (—1)‘x|x(7>.

We denote by A™ the dg K-module A endowed with the differential d,. We have the
following theorem.

Theorem E. For every complete brace algebra A, the simplicial set MCq4(A) is a Kan
complex. Moreover, we have the bijection and isomorphisms for every T € MC(A).

— mo(MCe(A)) ~ myDeligne(A), where Deligne(A) denotes the Deligne groupoid as-
sociated to the I'(PreLie, —)-algebra A (see [Ver23, Proposition-Definition 2.30]);

— m(MCe(A),7) ~{he€ Ay | dh) =T+ h(T) =T ® (1 + h)}/ ~;, where ~, is the
equivalence relation such that h ~, h' if and only if there exists 1 € Ay such that

h—h =d® + > 7(h hw,h’ R,

p,q>0 p q

— m(MCG(A), ) >~ (H1(AT), *,,0), where %, is the group structure on Hy(A") such
that

] *7 (1] = [+ " + 7, 1]
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— Tpi1(MCe(A), 7) ~ H,(A") for every n > 3.

We have the following homotopy invariance result, which extends the Goldman-
Millson theorem in dimension 0.

Theorem F. Let © : A — B be a morphism of complete brace algebras such that ©
is a weak equivalence in dgMody. Then MCo(©) : MCo(A) — MC4(B) is a weak

equivalence.

We use this new notion of simplicial Maurer-Cartan set for the study of the homo-
topy of mapping spaces in the category of non symmetric operads. For every n > 0,
and for every non-symmetric coaugmented cooperad C such that C(0) = 0, we construct
a twisting derivation 9" on F(C ® X' N,(A")) such that

B(C) @ A* := (F(C® X7 'N,(A*)),0°%)
is a cosimplicial frame associated to B¢(C). This leads to the following theorem.

Theorem G. Let C be a coaugmented cooperad and P be an augmented operad such
that C(0) = P(0) = 0 and C(1) = P(1) = K. Then we have an isomorphism of
simplicial sets

Mapg, (B°(C), P) ~ MC.(Homgeq, (C, P)).

The computation of the connected components and the homotopy groups of
Map, (B°(C), P) can then be achieved by using Theorem E.

In the symmetric context, the twisting derivation 9" constructed above on F(C ®
YN, (A™)) does not preserve the action of the symmetric group for every n > 2.
We instead consider a Y,-cofibrant replacement of B¢(C) given by the map B¢(C ®

H

Sury) — B¢(C), where Sur is the surjection cooperad defined in [BCN23, Theorem
A.1]. Using that the action of 3, on C(n)®Surk(n) is free for every n > 1, we construct
a twisting derivation 9" on F(C ® Surk ® X' N,(A™)) for every n > 0 such that

H

B°(C ® Surk) ® A® := (F(C ®@ Surk @ 7 'N,(A*)),0°)
H H
is a cosimplicial frame associated to B¢(C ® Surk). We deduce the following theorem.
H

Theorem H. Let C be a symmetric coaugmented cooperad and P be a symmetric aug-
mented operad such that C(0) = P(0) = 0 and C(1) = P(1) = K. Then YHomygeq, (C®
H

Surk ® N,(A®),P) is endowed with the structure of a Fmo—algebm such that we
have an isomorphism of simplicial sets

Mapgopo(Bc(C), P) ~ MC(EXHomygeq, C %) Surk ® N,(A®),P)),

where Mapl,,0(B°(C), P) := Mapy,0(B°(C ® Surg), P).
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Plan of the thesis

This thesis is composed of two chapters written in English:

e Chapter 1, which is a version without modification of the paper Pre-Lie algebras
with divided powers and the Deligne groupoid in positive characteristic [Ver23| to
appear in the journal Algebraic and Geometric Topology,

e Chapter 2, which is a follow-up of Chapter 1, which will give the matter of a
subsequent memoir,

and one appendix, which provides detailed recollections on operad theory.

General conventions

In this thesis, we deal with differential graded K-modules (dg K-modules for short)
over a fixed ground ring K.

In Chapter 1, we adopt cohomological conventions, because we aim to generalize
results expressed in this setting in the literature. In this context, a dg K-module
is a K-module V endowed with a decomposition into a direct sum of submodules
V ~ @, ., V" and which comes equipped with a differential d : V' — V such that
d(V™) c V™t for every n € Z and d* = 0.

In Chapter 2, we rather adopt homological conventions in order to tackle applica-
tions in homotopy theory. In this context, a dg K-module is a K-module V' endowed
with a decomposition into a direct sum of submodules V'~ €, ., V;, and which comes
equipped with a differential d : V' — V such that d(V,,) C V,,_; for every n € Z and
d*>=0.

Recall that we have an equivalence between these notions. More precisely, let
V ~ P,z Vn be a dg K-module with differential d in homological convention. If we
set V" :=V_, for every n € Z, then V.~ @, _, V" and d(V") C V™! for every n € Z.

A morphism of dg K-modules is a morphism of K-modules f : V. — W which
preserves the grading, so that f(V,,) C W, for every n € Z (in the homological set-
ting), and the differentials so that fd = df. We denote the category of dg K-modules
by dgMody with the grading convention (cohomological or homological) fixed by the
context.

We use that the category of dg K-modules is equipped with the structure of a
symmetric monoidal category. In the homological setting, if V ~ @, ., V,, and W =~
D,,cz Wn are dg K-modules, then their tensor product V @ W := V @k W is also a
dg K-module with (V. @ W), ~ @, ,_, V, ® W, for every n € Z. The differential of
V ®@W is defined by d(v®@w) = d(v) @ w+ (—1)Pv®@ d(w) for every v € V,, and w € W.
The symmetry operator 7 : V@ W — W ® V is defined by 7(z ®@ y) = (—=1)Py @ z
for every x € V, and y € W,. In what follows, we usually adopt + for signs which we
deduce from an application of this operator. The general rule (the Koszul sign rule)
is that any permutation of factors xy —— yx in a multiplicative expression in a dg
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K-module produces a sign + = (—1)?? where p is the degree of z and ¢ is the degree of
Y.
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Chapter 1

Pre-Lie algebras with divided powers and
the Deligne groupoid in positive
characteristic

The purpose of this chapter is to develop a deformation theory controlled by pre-Lie
algebras with divided powers over a ring of positive characteristic. We show that every
differential graded pre-Lie algebra with divided powers comes with operations, called
weighted braces, which we use to generalize the classical deformation theory controlled
by Lie algebras over a field of characteristic 0. Explicitly, we define the Maurer-Cartan
set, as well as the gauge group, and prove that there is an action of the gauge group
on the Maurer-Cartan set. This new deformation theory moreover admits a Goldman-
Millson theorem which remains valid over the integers. As an application, we give
the computation of the 7y of a mapping space Map(B¢(C), P) with C and P suitable
cooperad and operad respectively.

Outline of the current chapter

1.1 Recollections on pre-Lie algebras with divided powers 5
1.1.1 Pre-Lie algebras and the rooted tree operad . . . . .. .. 5
1.1.2 Pre-Lie algebras with divided powers . . . . . . .. .. .. 6

1.2 Deformation theory of I'(PreLie, —)-algebras 9
1.2.1 Differential graded pre-Lie algebras with divided powers . 9
1.2.2 The gauge group . . . . . . . . . . . o 25
1.2.3 Maurer-Cartan elements and the Deligne groupoid . . . . 29
1.2.4 An integral Goldman-Millson theorem . . . ... ... .. 31

1.3 Application in homotopy theory for operads 35
1.3.1 Infinitesimal compositions and decompositions of an operad

and a cooperad . . . .. ... 35
1.3.2 I'(PreLie, —)-algebra structure of the convolution operad 37
1.3.3 Computation of mo(Map(B(C),P)) . . . . . . . .. .. .. 40

An important result in deformation theory asserts that every deformation problem
over a field of characteristic 0 can be encoded by a differential graded Lie algebra (see

1
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[Lur04] and [Pril0]). More precisely, any deformation problem can be described by a
solution of the Maurer-Cartan equation:

() + gl 7] =0,
in some differential graded Lie algebra. The group obtained by the integration of
the differential graded Lie algebra into a Lie group, called the gauge group, moreover
acts on the Maurer-Cartan set. The orbits of this action give isomorphism classes of
deformation problems.

In [DSV16], Dotsenko-Shadrin-Vallette showed that if the differential graded Lie al-
gebra comes from a differential graded pre-Lie algebra, then the Maurer-Cartan equa-
tion, the gauge group and its action on the Maurer-Cartan set can be described in
terms of pre-Lie operations. A differential graded pre-Lie algebra is a vector space L
with a bilinear operation x : L ® L — L such that

(xxy)xz—ax*x(yxz)= (—1)|y|‘z|((x*z)*y—x*(z*y)),

and which satisfies the Leibniz rule with respect to the differential. Every differential
graded pre-Lie algebra is in particular a differential graded Lie algebra with the graded
commutator:

[,y = xxy — (=D ez,

Dotsenko-Shadrin-Vallette showed in particular that given a pre-Lie algebra L, the
pre-Lie exponential map exp : LY — (1 + L°) induces an isomorphism between the
gauge group and the group (1 + L° ®, 1) with ® the circular product defined by

1
a® (1+b) :Zma{b,...,b},
n>0 n
where —{—, ..., —} denotes the symmetric braces determined by the pre-Lie structure
*, starting with x{y} = x*y. Then, by writing the Maurer-Cartan equation as a zero-
square equation, they prove that the action of the gauge group on the Maurer-Cartan
set can be computed in terms of the circular product © as

et a=(txa)o@e?,
allowing us to have an easier way to compute the Deligne groupoid associated to any
differential graded pre-Lie algebra over a field of characteristic 0.

The aim of this paper is to develop a deformation theory in positive characteristic
which generalizes the deformation theory controlled by pre-Lie algebras over a field of
characteristic 0 developed in [DSV16]. Our idea is to use differential graded pre-Lie
algebras with divided powers.

The notion of a pre-Lie algebra with divided powers (or I'(PreLie, —)-algebra) has
been studied by Cesaro in [Ces18]. He showed in particular that every pre-Lie algebra
with divided powers comes equipped with weighted brace operations —{—, ..., =}, ..
for each collection of integers 71, ..., r, > 0, which satisfy similar identities as the quan-
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tities 1
x{yla“-;yn}rl,...,rn = H rlll‘{yla---aylw"7yna'-'7yn}

i

T1 Tn

in a pre-Lie algebra over a field of characteristic 0 (see [Cesl8, Propositions 5.9-5.10]
for a precise list of these identities).

Every differential graded pre-Lie algebra with divided powers L comes equipped
with analogous weighted brace operations —{—,..., —},, ., which satisfy a graded
version of the identities satisfied by weighted braces in the non graded framework. In
this context, we have an analogue of the Maurer-Cartan equation:

d(z) + z{x}, = 0.
With suitable convergence hypothesis, we also get that the circular product ® can be

written as
a@(1+b)= Za{b}n

n>0

and gives rise to a group structure on 14 L°. This group is called the gauge group of
L. As in characteristic 0, we also show that this group acts on the Maurer-Cartan set
of L.

Theorem A. Let K be a ring.

(i) In any complete differential graded pre-Lie algebra with divided powers L, the
circular product ®, defined as above, endows the set 1+ LY with a group structure.

(i) If we denote by d the differential of L, then this group acts on the Maurer-Cartan
set via the formula

(1+p)-a=(a+p{ats —d(p) @ (1+p)°

We prove that this new deformation theory satisfies an analogue of the Goldman-
Millson theorem given in [GMS88, §2.4]. Let Deligne(L, A) be the Deligne groupoid of
the complete dg pre-Lie algebra with divided powers L ® m,, where L is a dg pre-Lie
algebra with divided powers and m,4 the maximal ideal of a local artinian algebra A
over the field of fraction K of K. We precisely get the following result.

Theorem B. Let K be a noetherian integral domain and K its field of fractions. Let L
and L be two positively graded T'(PreLie, —)-algebras. Let ¢ : L — L be a morphism
of T(PreLie, —)-algebras such that H°(p) and H'(p) are isomorphisms and H?(yp)
is a monomorphism. Then for every local artinian K-algebra A, the induced functor
¢, : Deligne(L, A) — Deligne(L, A) is an equivalence of groupoids.

Other approaches to generalize the usual deformation theory in the positive charac-
teristic framework have been proposed recently in the literature. We have for instance
a deformation theory in an associative context, via A,.-algebras, which is used to study
deformations of group representations (see [MR23a]). Another approach is given by
(spectral) partition Lie algebras to get a full generalization of the Lurie-Pridham cor-
respondence in the setting of a field with positive characteristic (see [BCN23; BM23]).
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The main motivation for the approach developed in this paper is that operadic
deformation problems are expressed in terms of pre-Lie structures. The goal is then to
compute the 7y of a mapping space Map(B¢(C), P), where we take any dg operad P on
the target and the operad B¢(C) given by the cobar of a dg coaugmented cooperad C on
the source. Recall simply that B¢(C) defines a cofibrant operad when C is cofibrant as a
symmetric sequence (X,-cofibrant). It is well known that, over a field of characteristic
0, the 7y of this mapping space is the set of isomorphism classes of the Deligne groupoid
of the Lie algebra Homy(C, P). Using the pre-Lie algebra structure of Homy(C, P), this
can be seen as a consequence of the computations in [DSV16]. To extend this result,
we first show that Homy(C, P) admits a structure of dg pre-Lie algebra with divided
powers. Then we get the following statement.

Theorem C. Let K be a field. Suppose that C is a X,-cofibrant coaugmented dg cooperad
and P an augmented dg operad. We then have an isomorphism:

7o(Map(B¢(C), P)) ~ mDeligne(Homs(C, P)),

where mDeligne(Homy(C,P)) denotes the set of isomorphism classes of the Deligne
groupoid.

This theorem gives a first step for the calculation of the homotopy groups of a
mapping space Map(B¢(C),P) over any field.

In the first part of this paper, we recall some definitions and properties on pre-
Lie algebras and pre-Lie algebras with divided powers: in §1.1.1 we briefly review the
definition of the notion of a pre-Lie algebra and the construction of the corresponding
operad; in §1.1.2, we review the definition of a pre-Lie algebra with divided powers and
of the weighted brace operations.

In the second part, we develop the deformation theory for differential graded pre-Lie
algebras with divided powers: in §1.2.1, we study pre-Lie algebras with divided powers
in the dg framework; in §1.2.2, we define the circular product and prove assertion (7)
of Theorem A; in §1.2.3, we define the Maurer-Cartan set and prove assertion (i) of
Theorem A; in §1.2.4, we finally prove our analogue of the Goldman-Millson theorem
(Theorem B) for this new deformation theory.

We conclude this article with our application of this deformation theory for operadic
deformation problems: in §1.3.1, we introduce some basic definitions on symmetric
sequences and operads which will be useful to write our formulas; in §1.3.2, we study the
structure of differential graded pre-Lie algebra with divided powers of the convolution
operad; in §1.3.3, we finally give a proof of Theorem C.

Conventions

We denote the symmetric group on n letters by >,. Recall that a permutation
0 € Y yotr, is a shuffle permutation of type (rq,...,r,) if o preserves the order on
the subsets {r;+---+r+1 < --- <ry+--+rqpof {1 < -+ <ri+---+r,}. The shuffle
permutation o is pointed if we also have (1) < o(r;+1) <--- < o(ri+---+r,_1+1).
We denote by Sh(ry,...,r,) the subset of ¥, ..., composed of shuffle permutations
of type (r1,...,r,) and by Sh.(ry,...,r,) the subset of Sh(rq,...,r,) composed of
pointed shuffle permutations.
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1.1 Recollections on pre-Lie algebras with divided
powers

We first recall some definitions and basic properties on pre-Lie algebras and pre-Lie
algebras with divided powers. Pre-Lie algebras were introduced in deformation theory
by Gerstenhaber in [Ger63], while pre-Lie algebras with divided powers were intro-
duced by Cesaro in [Cesl18].

In §1.1.1, we give brief recollections on the notion of a pre-Lie algebra. We will more
particularly see pre-Lie algebras as algebras over an operad introduced by Chapoton-
Livernet in [CLO1], the rooted tree operad, of which we also recall the definition in this
subsection.

In §1.1.2, we give recollections on the notion of a pre-Lie algebra with divided
powers. These objects can be seen as pre-Lie algebras with some extra operations.
We will focus on some of these operations called weighted braces that will mimic the
quantities which appear in the definition of the circular product.

1.1.1 Pre-Lie algebras and the rooted tree operad

We will use the following basic definitions.

Definition 1.1.1. A pre-Lie algebra over a ring K is a K-module L endowed with a
bilinear morphism * : L ® L — L such that

(xry)xz—xx(y*x2)=(x*x2)*xy—x*x(2xYy).

The category of pre-Lie algebras is isomorphic to the category of symmetric braces
algebras (see [OGO8] or [LMO05]). The symmetric braces —{—, ..., —} are defined by
induction on the length of the brace by

af} = q,
a{b1} = ax*by,

\V/TLZ]_,CL{bl,...,bn} = a{bl,...,bn_l}{bn}

n—1
_Za{bh“‘7bi—17bi{bn}7bi+17"'7bn—1}7
=1
for all a,bq,...,b, € L.

For our purpose, it will be more convenient to see pre-Lie algebras as algebras over
an operad. This operad can be described in terms of rooted trees as follows.



6 CHAPTER 1. Pre-Lie algebras with divided powers (... )

Definition 1.1.2 (see [CLO01, §1.5]). We call n-rooted tree a non-planar tree with n
vertices equipped with a numbering from 1 to n, together with a distinguished vertex
called the root. By convention, we choose to put the root at the bottom in any repre-
sentation of a tree.

We let RT (n) to be the set of all trees with n vertices, and PreLie(n) = K[RT (n)].

The collection PreLie is endowed with an operad structure. The action of ¥, on
PreLlie(n) for all n > 1 is given by the permutation of the indices attached to the
vertices. The i-th partial composition S o; T' € PreLie(p+q— 1) of S € RT (p) and
T € RT(q) is given by the sum of all the possible trees obtained by putting 7" in the
vertex ¢ of S, with the obvious choice of the numbering (see an example in [CLO1,
§1.5]). This operad is also called the rooted tree operad.

One can show that the algebras over the rooted tree operad are precisely the pre-Lie
algebras (see [CLO1, §1.9]). In particular, the symmetric braces are given by the trees
E,, for n > 0 called corollas with n leaves:

1.1.2 Pre-Lie algebras with divided powers

In this part, we recall the notion of a pre-Lie algebra with divided powers. We
obtain this definition as a particular case of a general construction, for algebras over
an operad, which we briefly recall.

Every operad P on a suitable monoidal category C gives a functor S(P,—) : C' —
C, called the Schur functor, defined by

S(P,V) =P Pn) s, V",

n>0

where we consider, in the direct sum, the coinvariants of P(n) ® V" under the diag-
onal action of ¥, given by its action on P(n) and its action by permutation on the
tensor product V®". The image of a tensor product p®@v; ® --- @ v, € P(n) @ V&
in P(n) ®s, V" will be denoted by p(v1, ..., v,). The Schur functor defines a monad
and the category of algebras over this monad is the usual category of algebras over the
operad P. In particular, pre-Lie algebras in the sense of Definition 1.1.1 are identified
with S(PreLie, —)-algebras.

In the above definition, one can chose to take invariants instead of coinvariants. We
obtain a new functor I'(P, —) : C' — C' defined by

I(P,V) = P(n) @™ ver.

n>0

If P(0) = 0, this functor also gives a monad (see [Fre00, §1.1.18]). The algebras over
this monad are called P-algebras with divided powers. The motivation for this terminol-
ogy comes from the fact that I'(Com, —)-algebras are precisely the usual commutative
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and associative algebras over K with divided powers.

Note that if C'is a category whose objects are K-modules, then we have a morphism
of monads Tr : S(P,V) — ['(P, V) called the trace map and defined by

TT(p(Ul, e 7UTL)) - Z (O- p) ® Uafl(l) ® ce ® Uafl(n)'

oEX,

If K is a field of characteristic 0, the trace map is an isomorphism. It is no longer the
case in general when char(K) # 0.

In the case C' = Modg of the category of K-modules and P = PreLie, if V is a free
K-module, we however have an isomorphism of modules given by the orbit morphism O :
S(PreLie, V) — T'(PreLie, V) defined as follows. Let n > 1 and t € PreLie(n)V®"
be a basis element. We set

oty= > ot

0€X, [Staby,, (t)

where Staby; (t) is the stabilizer of t under the diagonal action of 3, on PreLlie(n) ®
V@ The map O is then extended by linearity on PreLie(n) @ V™.

Theorem 1.1.3 (A. Cesaro, [Cesl8|). Every pre-Lie algebra with divided powers L
comes equipped with operations —{—, ..., =}, .+ L™ — L called weighted braces
which satisfy the following identities:

(1) T{Yo(1), s Yo(n) Froymrainy = XYLy -3 YnFroirms

(W f{yl, o Yio15Yis Yit1s - - 7yn}rl,...,m,l,o,rm,...,rn = :E{y1, o Y1, Y1, - ,yn}rl,...,ri,l,ri+1,...,r,L7
(110) x{Y1, - s Nis oo YnFrrinn = AT{YL, o s Yiy e e s Yn Sy
T+ Tit1

e >£L’{y1, s Yin e 7yn}rl,~~,T¢—1,Ti+Ti+1,Ti+2w-,Tn7
1

(Z/U) x{y17 ct 7yi7 y’h A 7yn}rl,...,ri,n_‘_l,‘..,rn = (
(’U) x{yh s Y + {y\;ﬁ s 7yn}7‘1,...,ri,...,rn - Zx{yh <oy Yiy g’,i) s 7yn}rl,...,s,'ri—s,...,rn7
(’UZ) ${y1, cee 7yn}7"1,...,rn{z17 ey Zm}sh...,sm -

Z H ( 5 x{yl{zl, o 7Zm}al Loy iz, - Zm}o&’”,...,aifl’

si=Bi+> af*

o Ynfz, - ,zm}a?,lwaw, e Uiz, Zm}a?»T‘n7.."a:Lﬂ”'n sy Zm L BB
for all nm > 0, r1,...,7,81,...,8n, > 0, 1 < i < n, o € X, A\ € Kand
TyYly oo s Yny 215, 2m € L.

Note that the formula (vi) is written in a form that uses fractions for more conve-
nience, but can be reduced to Z using the other formulas. The process works as follows.
Let 4 such that 1 <4 < n. In the sum, we first fix 51,..., B, and o for 1 <j <m, 1 <

¢ <r;and p # i. We obtain a sum with (o, ..., ok} 0/1”, ..., abT) as variables.

mo

We identify this last tuple with a tuple of tuples of the form ((oz1 bbby (adT L ek,

m m
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Let u be one of these tuples and suppose u = (u,..., U1, ..., Uy, ..., U,;) Up to per-
o iy
mutation. Note that, if uy,...,u, are given, we exactly have t‘—lt' such terms
ety

occurring in the sum. Then, by using the symmetry formula (i), the formula (iv) and
by summing over all such tuples, we have in the sum:

1 ;!
Hj(Tj)! o -Z-tq!tll ety a{yi{z, - zm}ai,lwaiﬁl, oy, ’Zm}a}’”,..‘,aiﬁ” e
vz, o zmbars - Y2, o Zm b - -
. 7yTL{Zl7 R Zm}a?717_”7a;§£17 s 7yn{217 s 7Zm}a?’T",.,,,a%’T"7 AR 7Zm}l,...,tl,.4.,tq,...,1,61,...,5m;
where we have set y; {21, .., 2m}ar = Vi{21s - -+ Zm}an.om i Uk = (01, ..., au,). Hence,
it gives:

1
mx{yl{zl, ey Zm}a%,l Oé}r’Ll’ e ,yl{Zl, ce ’Zm}a}’rl,...,a;’fl’ ey

Yz, o ambars - Y2, o Em b - -
cyndz, zm}a?,17‘_.7a%1, oo Unfz, ,zm}a?,mmag{m, 21y Zm ety st LB B -

By iterating this argument on the other terms, we obtain an expression over Z.

The reader can find an example of such a reduction of the formula (vi) in [Cesl8,
Example 5.11], as well as a proof of the previous theorem (see [Cesl8, Propositions

5.9-5.10]).

We give the explicit construction of the weighted braces.

Construction 1.1.4. We regard the weighted braces x{y1,...,Yn}r . r, as the action
of the corolla Fy~ ,, on the tensor tQy; @ -+ QY1 @ -+ @y, @ - -+ @ Yy, where we regard
i —_— —_—

Tn

T1
the y;’s as distinct variables (see below). If y; # y; for all i # j, then we precisely set

x{ylv e 7yn}7“17--~7Tn = V(OFZLTZ(Q;"Z/l? e Yy Yny - 73/”))7

71 Tn

where 7 is the I'(PreLie, —)-algebra structure on L.

In order to include the case where some of the vy;’s might be the same, let E, to be
the free K-module generated by a basis e, e, ... ,e,. Let gy 4 @ £, —> L be the
morphism which sends e to x and e; to y; for all 1 < i < n. We obtain a morphism
L(PreLlie, gy, y.) : ['(PreLlie, E,) — I'(PreLie, L). We then take the orbit map
at the source and apply this morphism next to have a good definition of the weighted
braces.

Remark 1.1.5. The converse of the previous theorem is also true, provided that L s
free as a K-module.
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1.2 Deformation theory of I'(PreLie, —)-algebras

The main goal of this section is to extend the results proved by Dotsenko-Shadrin-
Vallette in [DSV16] in the context of a ring of positive characteristic. The main idea
is that formulas which define the circular product and the gauge action can be written
in terms of weighted brace operations.

In §1.2.1, we revisit the definition of pre-Lie algebras with divided powers in the
dg framework. In particular, we give the analogue of the weighted brace operations.
We then make explicit an example of differential graded pre-Lie algebras with divided
powers given by differential graded brace algebras.

In §1.2.2, we define the circular product ® in terms of weighted brace operations
that will generalize the one given in [DSV16]. We then show that this induces a group
called the gauge group associated to the I'(PreLie, —)-algebra.

In §1.2.3, we define the Maurer-Cartan equation in a I'(PreLie, —)-algebra, and
then the Maurer-Cartan set. We also see that the gauge group acts on the Maurer-
Cartan set by a similar formula given in [DSV16].

In §1.2.4, we finally motivate this new deformation theory with an analogue of the
Goldman-Millson theorem. This theorem, in particular, has the advantage to be true
on integers.

1.2.1 Differential graded pre-Lie algebras with divided powers

As we are dealing with differential graded modules, our first goal is to define and
study differential graded pre-Lie algebras with divided powers.

In the following sections, we assume that dg modules are equipped with a cohomo-
logical grading convention. We will denote by ® the usual tensor product of graded
modules over any ring K. This induces a symmetric monoidal category that we will
denote by dgMody. If there is no possible confusion, then we will denote by 4 any sign
produced by the Koszul sign rule.

Weighted braces on I'(PreLie, —)-algebras

Our main goal here is to extend [Cesl8, Proposition 5.13] in the context of dg
modules. We first begin by a basic definition.

Definition 1.2.1. A differential graded pre-Lie algebra is an algebra over the monad
S(PreLie, —) : dgMody — dgMody.

Equivalently, we can see that a differential graded pre-Lie algebra is a graded module
L =@, ., L" endowed with a morphism of graded modules * : L ® L —» L such that

(xxy)xz—axx(yxz)=x((zx2)*xy —z*x(2*y))
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and a differential d : L*¥ — L**1, which satisfies
dlxxy) =d(z) *xy £z *d(y),
where + is the sign yielded by the permutation of x and d.

We now define the notion of a pre-Lie algebra with divided powers in the dg frame-
work.

Definition 1.2.2. A differential graded pre-Lie algebra with divided powers is an
algebra over the monad I'(PreLie, —) : dgMody — dgMody.

Let L € dgMody. Suppose that L* is a free K-module for every k € Z. Let
L be a basis of L composed of homogeneous elements. Then we have a basis on
PreLie(n) @ L for every n > 1 given by tensors T ® e; ® - - - ® e,, where T' € RT (n)
and eq,...,e, € L. We denote by RT (n) ® L®" this basis. If char(K) # 2, then the
action of 3J,, on PreLie(n)® L®" does not restrict to an action on R7T (n)®LE™ because
of the Koszul sign rule. To handle things properly, we put this sign apart. We endow
RT (n)® L% with the diagonal action of ¥,, where 3, acts on L™ by the permutation
of elements where we omit the Koszul sign. Given a tensor t € RT (n) @ L®", we
denote by X, the orbit of t under this action so that we have the following equality of
graded K-modules:

PreLlie(n) @ L% = @ KX
E(RT (n)®@LO™) /%,

We recover the Koszul sign rule in the following way. Let t € RT (n) ® L%". For every
o € %,, we define £(0,t) € {£1} C K* as the Koszul sign which appears after the
usual action of o on t in the graded module PreLie(n) ® L®™. For every o, 7 € 3, we
have the identity

e(or,t) = e(o, 7 - t)e(T,1).

Equivalently, we can see ¢ as a functor from the groupoid with X as set of objects
and Hom(t', ') = {oc € X, | o -t = t"} for ¢,/ € X, to the groupoid, denoted by
{£1}, with only one object * and Hom(x,*) = {£1} C K*. We can then define the
Y,-representation K[X(|* as K[X{] endowed with the action of ¥, defined by

+

-1t =¢(o,x)(0-x)F

for every o € ¥, and x € X;. We thus have the following identity of 3,,-representations:

PreLie(n) @ L = & K[X()*.

E(RT(n)@Lem) /5,

Our purpose it to define an analogue of the orbit map, by using the above decomposition
in set-theoretic orbits. We rely on the following lemma.

Lemma 1.2.3. Let G be a group and H C G be a subgroup. We consider the action
of G on G/H by the left translation. Let X be the groupoid with as set of objects G/H
and with as morphisms Hom(z,2') ={g € G | g- v = a'}. Let ¢ : X — {£1} C K*
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be a functor. We denote by €(g,x) the image of the morphism g : © — g - x under
this functor. Consider the G-representation K|G/H|* = K[G/H] on which G acts by
g-1F =¢(g,2)(g-x)* for every x € G/H. For every g € G, we denote by G its class
in G/H and by [gF] the class of g* € K|[G/H)* in (K[G/H]*)q.

— If there exists h € H such that €(h,1) # 1, then

(KIG/H]F)e = (K/2K) [T 5 (KIG/HF)® = Tora(K) | > e(g, T)7" | .

geG/H

where Tory(K) denotes the set of 2-torsion elements of K.

— Otherwise, we have the identities

(KIG/H Mo = KT 5 (KIG/HSE =K | > &g, T)g*
geG/H
Proof. We first compute (K[G/H]*)g. For every g € G, we have g= = g - (g(g,1)1")
so that the K-module (K[G/H]*)g is generated by [T7]. If there exists h € H such
that £(h,1) # 1 (meaning that e(h,1) = —1 # 1 in K), then, for every A € K, we
have that A[I"] = A[h- 1] = —A[T"] which shows that (K[G/H]*)e = (K/2K)[[T']]. If
e(H,T) C {1}, then (K[G/H]*)¢ = K[[T]].

We now compute (K[G/H]*)%. Letx = Y7y Agg+ € (K[G/H]*)Y. Forevery g €
G, the identity g-x = x gives Ay = €(g, 1)A\7. If there exists h € H such that £(h, 1) # 1,
then e(g, A7 = A\g = Ay = €(gh, 1)A\; = (g, 1)e(h, I)Ar which gives 27 = 0. We
then have Ay € Tory(K) which shows that (K[G/H]*)% = Tory(K)[> ;e m £(9, DT
If e(H,1) € {1} then (K[G/H]*)® =K[Yjcq/n (9, 1)77]. O

Lemma 1.2.4. In the situation of Lemma 1.2.3 and when e(H,1) C {1}, we define
the orbit map O : (K[G/H]¥)g — (K[G/H]*)% by

O(M*) = > e(g.Dg*

geG/H
This map is an isomorphism.
Proof. This is an immediate consequence of the second point of Lemma 1.2.3. O

We can apply this lemma to our situation, by noting that for every t € RT (n)®@L%",
the set X is in bijection with ¥, /Staby, (t). In order to apply Lemma 1.2.4, we
need to remove some elements of RT (n) ® L%". These elements are given by tensors
t € RT(n) ® L™ such that there exists o € Staby, (t) with £(o,t) # 1. We denote
by (RT (n) ® LZ™)° the set of such elements and (R7 (n) @ LZ)" = (RT (n) ® L") \
(RT (n)®@L%™)°. In the case char(K) = 2, we just have (RT (n)@L®")" = RT (n)QLZ".

We note that these sets are stable under the action of ¥,,. Indeed, if t € RT (n) ® L™
is such that there exists o € Staby, (t) with (o, t) # 1, then for every 7 € ¥,,, we have
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that To7~! € Staby, (7 -t) and
e(ror ™, 7-t) =e(r,0 - Ye(o, (777 t) = e(r,t)e(0, (77, 7 - t) = £(0, t) # 1.

We deduce that the quotient (R7 (n) ® £®")/%,, is the disjoint union of (R7T (n) ®
£ /%, and (RT(n) @ L) /%,,. We then define

S’ (PreLie, L) = @K[(RT (n) ® L2)|*)s,, C S(PreLie, L).

n>1

We deduce the following proposition.

Proposition 1.2.5. IfK is an integral domain and if L* is a free K-module for every
k € Z, then the map O : 8"(PreLie, L) — I'(PreLie, L) is an isomorphism.

Proof. Let L be a basis of L composed of homogeneous elements. We adopt the same
notations as before Lemma 1.2.3 and before the statement of Proposition 1.2.5. We
then note that we have

S’ (PreLie, L) = P - (K[X{F)s, ;

n>1 te(RT (n)@LE™)T /5,

[(PreLlie, L) = EB (K[X (%),

n21 te(RT(n)QLE") /T,

If char(K) = 2, then 2K = 0 and Tor,y(K) = K so that the proposition is an immediate
consequence of Lemma 1.2.4.

If char(K) # 2, then by the first point of Lemma 1.2.3 and by noting that Tors(K) =0
because K is an integral domain, we have that (K[(RT (n) ® £%")°]*)* = 0. We
are then reduced to analyze the orbit maps O : (K[X{]%)s, — (K[X{|*)®" for t €
(RT (n) ® LZ)" which are isomorphisms by the second point of Lemma 1.2.4.

In any case, we then obtain that O : 8" (PreLie, L) — I'(PreLie, L) is an isomor-
phism. O

Theorem 1.2.6. Let K be a ring. A graded pre-Lie algebra with divided powers L =
Dicr LF over K comes equipped with operations, called weighted braces, which have
the following form.

- If char(K) = 2, weighted braces are maps
= =Yg LT L

-----

defined for any collection of integers r,...,r, > 0, which satisfy all formulas of
Theorem 1.1.3 and preserve the grading in the sense that

.....
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braces are maps

_{_7 R S R _}7‘1,...,7“;7,1,...,1 : L ox (Lev)Xp X (LOdd)Xl] — L’

defined for any collection of integers p,q,r1,...,1m, > 0, which satisfy all formulas
of Theorem 1.1.8 with a sign given by the Koszul sign rule (see the Remark 1.2.7
below) and preserve the grading.

Conversely, if K is an integral domain, if L* is a free K-module for every k € Z and
if L admits weighted brace operations, then L is a I'(PreLie, —)-algebra.

Remark 1.2.7. If char(K) # 2, formulas (i) and (vi) of Theorem 1.1.3 differ by a
sign given by the Koszul sign rule. The sign which appears in formula (i) is given by

(4

o ®Tan I8 Tn
Yoty @ @Yy FYT @ @y

o(n) n
In formula (vi), for each B;’s and a°’s, the sign which appears in the relevant term is
given by

1,1

KRay’ 1,1 ®a"71 n,rn
Z?Sl®"'®z7§ism’—>i21 1 ®---®Z§bam ® Rz ®...®Z§2am ®Z§ﬁl®"'®zgﬂm.

Note that these signs are induced by the permutation of the odd degree elements between
them. Since their associated weight are equal to 1, formula (vi) can still be written
without rational coefficients by the same process as in the paragraph after Theorem
1.1.5.

In order to handle both of the cases, in the following, when taking elements with
associated weights, we will tacitly suppose that if char(K) # 2, then all odd degree
elements will have an associated weight equal to 1.

Proof. We basically do the same thing as in [Ces18, Proposition 5.10]. Let z,yy,...,y, €
L. Let E,,, . 4, be the graded K-module generated by e, ey, ..., e, with matching de-
grees. We have a morphism of graded modules from ¢, , . : Epy, .., — L which

sends e to x and e; to y; for every 1 < ¢ < n. This gives rise by functoriality to a
morphism ['(PreLlie, ¢y ;... y.) : D(PreLlie, Eyy,  4.) — I'(PreLlie, L). We set

T{YL, - Un e = LT (PreLie, ey, 0y, (OFs . (€,€1,. .. €1, n,y ...y e0))),

T1 Tn

where [ is the I'(PreLie, —)-algebra structure on L. One can check that all the desired
formulas are satisfied.

Now suppose that K is an integral domain and that L admits weighted brace op-
erations —{—, ..., —},, .. We first note that every elements in I'(PreLie, L) can be
described as a sum of iterated monadic compositions of corollas in some basis of homo-
geneous elements of L. This can be proved by using Proposition 1.2.5 and by following
the same proofs of [Cesl8, Theorem 5.1] and [Cesl8, Lemma 5.2, which come from
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the computation of the monadic composition in I'(PreLie, —). We next pick elements
T, Y1, ..,Yn of the chosen basis such that y; # y; if ¢ # j, and set

Z<OFEiri<xayla e Y1y Uny - 7yn)> = x{yla LR 7yn}7‘1,...,rn-

T1 T'n

Since every elements of I'(PreLie, L) can be described as a composite of corollas in
I'(PreLie, —), we have defined [ : I'(PreLie, L) — L. We see that this construction
does not depend on the choice of the basis of the L*’s. Indeed, we can apply the same
arguments as in [Cesl8, Lemma 5.15], which only rely on computations and on the
relations satisfied by weighted braces. The same proof of [Cesl8, Lemma 5.18] can
also be applied to prove that the resulting morphism [ endows L with a structure of a
['(PreLie, —)-algebra. O

This theorem admits an analogue in the differential graded case.

Theorem 1.2.8. Fvery differential graded pre-Lie algebras with divided powers L =
Drcr LF admits weighted braces which satisfy the same formulas as in Theorem 1.2.6,
and which satisfy in addition the identity

d(@{y1, - Yntrrrrn) = AD)YL - UnFrrrien

+ Z<_1)Ekm{y17 s Yk, d(yk’)a s 7yn}rl,...,rk—l,l,...,rn7
k=1

where e = |x| + |y1| + - + |Yp—1].

Conversely, if K is an integral domain, if L* is a free K-module for every k € Z and
if L admits weighted brace operations which satisfy the previous identity, then L is a
' (PreLie, —)-algebra.

Proof. Let x,y1,...,y, € L. We set £, ., to be the dg module generated by ele-
ments e, ey, ..., en, f, f1,..., fosuch that le| = |z|, |e;| = ], ..., |en| = |yn| and d(e) =
f,d(er) = f1,...,d(en) = fn. We then have a morphism vy, o @ Epyy 0 —> L
of dg modules defined by sending e to x, and e; (resp. f;) to y; (resp. d(y;)) for every
1 <i<n. Weset

C{Y, - Un ey = U (PreLie, ¥y y, .y, J(OFs v(e 61, . €1, enyenns6n))),

T1 Tn

where [ is the ['(PreLie, —)-algebra structure on L. By forgetting the differentials and
by applying Theorem 1.2.6, we have that the operations —{—, ..., —},, ., satisfy all
the formulas of Theorem 1.1.3, with a sign. It only remains to prove the compatibility
with the differential d.

d(z{yi, - Yntrmn) = dUT(PreLie, ?ﬁx,yl’m’yn)(OFZi r(€ €1, €1,y €)))

T1 Tn

= l(F('P'r’eEie, ww,yl,...,yn)(dOFZi i (67 €1,-+-3€1,--,En,y. .. 7€n)))7

1 Tn
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by commutation of d with the algebra structure [ and v, .. Next, we claim that

dOFs (e, e1,...,e1, . €n,...yn) = OF o (f €1, 61, . €0, 0)
—_——— —_——— —_———

—_———
T1 Tn T1 Tn
n
- g TOFs (e 61, o €1, koo hy fhy v €y ey ).
o N—— N—— N———
—1 71 Tk_l Tn

Indeed, recall that

OFs- ,(e,e1,...,€1,...,€n,...,6,) = Z (T'(inri®€®€?rl®"'®€§r").

r o oc€Sh(1,r1,...,rn)

We then have

dOFs ;. (e,e1,...,€1, .. €n, ... 6y) = OFx o (f,e1,...,€1,...,€n,...,6)
' —— —— ' —— ——
1 Tn
n Tk
£ Y Yo (Frae@" 0 0 T 0 fivg T 0 @),
k=1 oceSh(1,r1,...,rn) =1

T1 Tn

Let 1 <k <n. Forevery 1 <i <1y, we define 75 ; as the permutation which permutes
fr with the block e} ', We then obtain

dOFs y.(e,e1,...,€1,...,€n,...,6n) = OFx . (foe1,... e1,. . €n,... )
—_—— —— ——
Tn T1 Tn

T1
n Tk
D IED DR DETE = HU SRR ST ey PR )

k=1 oeSh(1,r1,...,rn) =1

We note that, for every 1 < ¢ < 7, the permutation ark_il is in Sh(1,ry,...,1% —
1,1,...,7,). In the converse direction, if ¢ € Sh(1,7,...,7x—1,1,...,7,), then there
is a unique 1 <14 < such that o7, ; € Sh(1,71,...,7,). We thus have proved that

dOFs . (e,e1,...,€1,... €n,....ey) = OFx o (f,e1,...,e1,....€n,...,6)
@ ——— ——— @ ——— ————
71 Tn T1 Tn
+2 2 5 (Frn @@ 8 @™ ' 0 fi®- ™)

k=15eSh(1,r1,....,rkx—1,1,...,rp)

which gives

dOFs v(e,e1,. .. €1, e, osen) = OFs o (fier, .. e, 6n,0 €0)
T1 Tn T1 Tn
n
+Z:I:(QFZiri(e,el,...,el,...,ek,...,ek,fk,...,en,...,en).

Applying I'(PreLie, 1y, ....,,) and [ will then give the desired quantity, by definition
of the weighted braces.
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Suppose now that K is an integral domain, that L* is free for every k € Z and that
L is endowed with weighted brace operations. By Theorem 1.2.6, and by forgetting the
differential of L, we can define a morphism of graded modules [ : I'(PreLie, L) — L
which is compatible with the monadic structure of I'(PreLie, —). We now prove that
[ commutes with the differential d. Since d commutes with the monadic structure, it is
sufficient to prove the commutation with d when reducing to corollas. Let z,y1,...,yx
be some basis elements with y; # y; if i # j and ry,...,7, > 1. We then have

dl(OFZim(xayl» oYt Yns - 7y7‘b)) = d(x{ylv s 7y'ﬂ}7"1,~~,7"n)

T1 Tn

= d(x){yla <. 7yn}7‘1,...,rn + Z :i:x{yla vy Yk, d(yk)» v 7yn}r1,.‘.,rk71,l,...,rn
k=1

We decompose d(yx) in the chosen basis, and write
k) = Z kil + [,
izk

where fr, = 0or f, & Vect(yi,...,y,) (note that y, cannot appear in the decomposition
of d(yx) for degree reason). This gives

dl(OFZ”y(ma Y1yo o5 Yty ooy Yny - - - ayn)) = d(x{yla s >yn}r1,...,rn)

T1 Tn

( ){yla s 7yn}rl,...,rn
+ Z Z :i:)\k 1x{y17 o Yk Yy e 7yn}r1,...,7“k—l,1,...,rn
k=1 i=1

ik

+ Z j:x{ylu sy Yk fkv e 7yn}7“1,...,rk—1,1,...,rn
=1

and then, by using the symmetry relations,

dl<OF2im('r7yl7 oYt Yny - 7yn)) = d(x{yh s 7yn}7"1,...,7"n)

71 Tn

=d(@){Yy1s-- - Yn}r... ,,,L—I—Z Z ENet{yn, Y Yis e Yk e Yn e il a1,

k=1 i=1
itk

=+ Z :i:x{yla vy Yk fk7 e 7yn}r1,...,rk71,l,...,rn

The second sum can be simplified, depending on the parity of |y;| for every i. If |y;| is
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even, then by formula (iv) of Theorem 1.1.3, we have

T{YL, - YisYir > Uk s Un St Ly Lot =
(ri + 1)5U{y1, oy Yiy o YRy - 7yn}n,...,r¢+1,...,rk71,.‘.,rn-

If |y;| is odd, then since we have supposed that any odd degree element has an associated
weight equal to 1, we have that r; = 1. By using the symmetry relation, and using
that we have no 2-torsion elements since L is free and that K is an integral domain, we
have that

m{ylv e Y Yis o Yk - 7yn}7’1,...,1,1,...,'rk—l,...,'rn =0.
We finally have that

dl(OFZin‘(‘ragh tot 7y57 tet 7yn7 tet 7yTJL)) = d(x{yla e 7yn}7"1,~~-,7'n>

71 Tn
=d(@) {1, Yntr.. +Z Z 0 M (Pt D)a{ys, o Ui e o Yky v ooy Yn Fryrit Lo
k=1 i=1
ik

+ Z j:x{yla e Yk, fk7 s 7yn}r1,...,rk—1,l,...,rn

where 6; = 0 if |y;| is odd, and ¢; = 1 else.

We now compute ld(OFs (2, y1, .-, Y1, Yns---,¥Yn)). By the same computa-
T N—~— —

1 Tn

tions as the beginning of the proof, we have that

dOFs v (2,41, YL, Yns - Un) = OFs  (d(2), 91, YL, Yo > Un)
S——— — ——— S———

T1 Tn T1 Tn

+ > 5 (P, @@y @ 0y @dy) @ - @ yp™).

k=1 5eSh(1,r1,....,rx—1,1,...,7p)
We now fix 1 < k < n. We aim to compute the sum

Z 15 Py @@y @ @y @dys) @ @yS™).
ceSh(1l,ri,...,re—1,1,...,rn)

We use the decomposition of d(y) in the chosen basis. The fj part will precisely give

OFZim(xayla--->y17--'7yk7'"7yk7fk’7--'7yn7"'7yn)-
——— S—— S———

T1 rp—1 Tn

We now look at the other terms. These terms give the sum

n

> > X0 (Fy,r, @3 @y7" @ @y T @y @ @y5™)).

=1 geSh(l,r1,...,rxg—1,1,...;m,
ik (L1 )

—1,...,rn
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By putting the only y; with the others, we find that this sum is equal to

n

2 2.

1=1 geSh(1,r1,...,m5,1,cc0;m—1,...,7
iZh (L7107 k n)

i)\k7i(’5.(inn®x®yi®r1 ®...®y;®ri®yi®...®y;§7'k—l®,..®y®rn)).

n

We now use that for every o € Sh(1,ry,...,r,1,...,rp — 1,...,7,), there exists a
unique permutation 7; ;, defined by inserting the last occurrence of y; among y; ® - - - ® y;
—_—

in position j (so that 1 < 7 < r; 4+ 1), such that 57‘&1 € Sh(l,ry,...,ri +1,...,1 —
1,...,7,). In the other direction, for every o € Sh(1,ry,...,m+1,...,rp —1,...,1,)
and 1 < j <r;+1, we have that o7, ; € Sh(1,ry,...,r;,1,..., 7 —1,...,7r,). We thus
obtain the sum

n ri+1

2 2. 2

=1 ceSh(1,r1,...,r;i+1,....;rp—1,...,rp) =1
Z#k ( 1 (3 k n) J

E Ni(07iy (Fs, @20y @ @y M@ @yt T e @ yd ™).

For a fixed i # k, we need to distinguish two cases: either |y;| is even, or |y;| is odd.
In the first case, we have that this sum is

n ri+1

2 2. 2

=1 ceSh(1,r1,....,r;+1,....rp—1,...,rp) J=1
Z;ék ( 1 7 k n) J

£ Mo (Fer, @@y @0y e 0y e @yd™))

n

which is precisely

Zi)\k,i(ri + 1)OFZi7"i(:L‘7y1a"'7y17"'ayia"'7yia"'7yk7'"7yk7"'ayn7"'7yn)'
=1 +1 1
ik T1 T4 Tk— Tn

In the second case, since we have supposed that every odd degree element has an as-
sociated weight equal to 1, we have that 7, = 1. We have that 7;; permutes the two
y;’s, which gives a sign, while 7; 9 = ¢d. The sum of the two obtained elements is then 0.

We thus have proved that
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dOFs (2,41, Y3 Yns -5 Yn) = OFs o (d(@), 91, Y1, Y+ Un)

-~ - - -~
T1 Tn T1 Tn

+ZZj:5i)\k7i(ri+1)(9inri(x,yl,...,yl,...,yi,...,yi,...,yk,...,y&,...,yn,...,y@)

k=1 ;;}C T ri+1 T;::I 7?2
n
+ZiOFZim<x7yla"'7y17"'ayka--'7yk7fk>"'7yna--'7yn)-
— —_— wl_/ —_—
r1 rE— Tn

where we have set §; = 0 if |y;| is odd, and §; = 1 else. By definition of /, we have

l(dOFZiri(mayb e Yty Yny - 73/71)) = d(x){yla v 7yn}r1,...,rn

1 T

+ Z Z 0 (i + Da{yn, o Vi oo Uk oo Yn il i1
k=1 i=1
ik

+ Z :l:x{yla <oy Yk fk7 HE ayn}m,...,rk—l,l,...,rn
k=1

which proves that [ commutes with d. O]

We then deduce from Propositions 1.2.6 and 1.2.8 that every differential graded pre-
Lie algebra with divided powers is in particular a differential graded pre-Lie algebra,
with

zxy = r{yh.
Remark 1.2.9. If Q C K and if L is a differential graded pre-Lie algebra, then L

15 a differential graded pre-Lie algebra with divided powers whose weighted braces are
explicitly given by

1
l’{yl, e 7yn}7“17~~-,7'n = Wl‘{yl, e Yty Yny e e 7yn}

T1 T'n
i terms of symmetric braces.

Remark 1.2.10. Every morphism of T'(PreLie,—)-algebras preserves the weighted
braces:

FE{yn - ynte ) = @ W) F(Yn) Y

In order to perform infinite sums, we define the notion of a complete I'(PreLie, —)-
algebra. We recall the following definition.

Definition 1.2.11. A filtered dg module is the data of a dg module L with inclusions
of dg modules
---CF,LCF,LC---C F{L=L.

A filtered dg module is complete if the morphism L — lim,>y L/F,L is an iso-
morphism.
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In general, for every filtered dg module L, the dg module L = lim,, > L/ F.L 1s a
complete dg module with the filtration F,L = Ker(L — L/F,L), since L/F L ~
L/F,L.

We now define the notion of a filtered I'(PreLie, —)-algebra.

Definition 1.2.12. A filtered I'(PreLie, —)-algebra is a I'(PreLlie,—)-algebra en-
dowed with o filtration preserved by the weighted braces in the sense that

FkL{Fle, A aFknL}m 77777 e C Fk+k17“1+~~+kn7°nL'

If L is a filtered I'(PreLie, —)-algebra, then the weighted braces —{—,..., =}, ..
induce weighted braces on the completion L= lim,>; L/F, L, Wthh satisfy the formu-
las of Theorems 1.2.6 and 1.2.8, and preserve the filtration on L so that L forms a
complete I'(PreLie, —)-algebra (provided that we work over a ﬁeld).

Examples of I'(PreLie, —)-algebras

We give examples of dg pre-Lie algebras with divided powers. The first examples are
given by dg brace algebras, following the idea of the proof in the non graded framework
in [Ces18].

Definition 1.2.13. A differential graded brace algebra is a differential graded module
L endowed with brace operations

T S )

which are compatible with the differential d:

n

d(f(g1, - 9n)) = A(F) g1, 9n) + > g1, d(gh), - gn),

k=1

and such that f{) = f and

f(gla s >gn><h17 R hr) = Z :i:f<Hlagl<H2>> R H2n71>gn<H2n>7H2n+1>7

where the sum is over all consecutive subsets Hy U Hyl)- - Hopyqy = {hy,..., h.}, and
the sign is yielded by the permutation of the g;’s with the h;’s.

The operad which governs brace algebras is denoted by Brace, and is defined, in
arity n, as the K-module spanned by the planar n-trees, i.e. trees with an order on the
set of inputs for each vertex (see [Cesl8, §6.1] or [Cha02, §2] for some details on the
operad Brace).

This operad allows us to represent all operations in brace algebras by the action of
a planar tree, or by a planar tree labeled with the inputs. For instance, we have
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(0 )(r) ()
() (@) () = f{g1(h1, ha), g2, g3(hs)).
()

Remark 1.2.14. Because the action of the symmetric groups on Brace is free, we
have that the trace map induces an isomorphism of monads Tr : S(Brace,—) —
I'(Brace, —).
We have an inclusion
1 : PreLlie — Brace

defined by the symmetrization of trees. Namely, i is obtained by summing over all
possible ways to write a given tree t as a planar tree. For instance:

(0g)-0g9-0g9-ago-ago-0g0-0g0
0 O O 0 O 0 0

The map 7 induces a morphism of monads that can be used to define a I'(PreLie, —)-
algebra structure on every dg brace algebra L, given by the following composition:

I'(:,L)

[(PreLie, L) —= T'(Brace, L) +—— S(Brace, L) —— L,

where we denote by [ : S(PreLlie, L) — L the Brace-algebra structure. We aim to
compute the weighted braces.

Theorem 1.2.15. Fvery dg brace algebra L is endowed with a I'(PreLie, —)-algebra
structure. Moreover, weighted braces —{—, ..., =}, .. are explicitly given by

Tn

f{gla s agn}rl,...,rn = Z if(?o*%l)? st 7§afl(r)>7

c€Sh(r1,...,rn)

where we have set v =Y. 1; and (Gy,...,G,) = (g1, 291> Gnyr-- -+ In)-

71 Tn
Proof. Let L be a brace algebra. As seen before, we have a I'(PreLie, —)-algebra
structure on L given by the composite

I'(PreLie, L) TGn, ['(Brace, L) +=— S(Brace, L) —— L

where | : S(Brace, L) — L is the brace algebra structure. We now compute the
weighted braces. Let f, g1,..., ¢, € L be homogeneous elements with g; # g; whenever
i# jandry,...,r, > 0 (recall that we have suppose that, in the situation char(K) # 2,
any odd degree element has an associated weight equaled to 0 or 1). We set £ =
Efgign and ¢ = ¢yg o (see the proof of Theorem 1.2.8). We use the following
commutative diagram

['(PreLie, L) —— ren,

F(Pre[,ie,w)T F(Brace,w)T S(Brace,w)T

['(PreLie, E) ToE I'(Brace, E) «—— S(Brace, E).

['(Brace, L) +—=— S(Brace, L) —— L
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We keep the notations f, ¢g1,..., g, for the corresponding elements in F. Then the ele-
ment f{g1,...,9n}r..r, i given by the image of t = OF,.(f, g1, .-, 015+ Gns-- -, Gn) €

~~
T1 Tn

[I'(PreLie, E') under the composite

[ (PreLie) I'(s,L)

['(PreLie, E) I(PreLie, L) —= T'(Brace, L) +—— S(Brace, L) ——

Our goal is to compute the image of x under the bottom composite of the diagram,
which is

(1 E) S(Brace, )
_—

[(PreLie, E) ——= T'(Brace, E) +—— S(Brace, E) S(Brace, L).

We set (g1,---,G,41) = (f,91,-- .91, -+, 9n,- -, gn) (note that we have added f here
—— ——

T1 Tn

so that these g,’s are different from the g,’s of the theorem). We then precisely have:
r= Y E(0F)®F,0) @ ®Fy1ppny
o€ 41/ [1; Br;

by definition of the orbit map (see Lemma 1.2.4). Now, because 3,1/ [[, X, is in
bijection with Sh(1,rq,...,r,), we can write x as

= D>, HoOF)®Tn @ OF(y
oc€Sh(1,r1,....,rn)

We now embed PreLie into Brace. The tree F, can be seen in Brace as ) sex, ., - F)

s(1)=1
@)

where F, is the planar tree

We then obtain, in I'(Brace, E),

T = Z Z O'S F ® 9o-1(1) & - ®§0—1(r+1)‘

oceSh(1,r1,....,rn) S€Xr+1
s(1)=1

We now need to compute y = Tr~*(z) € S(Brace, E). We claim that

y=" Y. @)y i)
weSh(1,r1,...,Tn)
w(l)=1

We compute

Triy)= D>, ) A F) @G @ @i
weSh(1,r1,...,rn) TEXr4+1
w(l)=1
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The fact that Tr(y) = x comes from the existence of a bijective correspondance
@ :Sh(l,ry,...,rp)x{s € X1 |s(1) =1} — {w e Sh(1,r1,...,r) |w(l) = 1} xX, 4.

Indeed, let ¢ € Sh(l,7,...,7,) and s € X,4; be such that s(1) = 1. We set
7 = o0s, and decompose T 'o = s7! = wp as a product of w € Sh(l,ry,...,r,)
with g € ¥y x 3, X -+ x X, . Since s(1) = 1, we have that w(1) = 1. We then set
¢(0,8) := (w, 7). Since the couple (w, ) uniquely depends on s, we have a well defined
injective map ¢ between two sets with the same cardinal. The map ¢ is then a bijection.

Since we have g,,,-1(;) = g,-1(; for every i, we obtain that T'r(y) = , which proves the
theorem. ]

Corollary 1.2.16. Let P be a non symmetric dg operad with P(0) = 0. We denote
by 1 € P(1) the unit element of P, by p(q1,--.,qn) = PR Q- Rqn, € PoP and by
vy :PoP — P the operadic composition of P. Then the dg module @,~, P(r) admits
a structure of a I'(PreLie, —)-algebra induced by the following brace algebra structure:

p(Q17-'-7Qn>: Z 7(p<117QI77QR771))
i1 in

1§i1<"‘<in§r
We also set p{q1,...,qn) = 0 if the operadic composition is not possible.

Proof. We refer to [GV95] for the brace algebra structure of €, P(r). It is endowed
with a I'(PreLie, —)-algebra structure by Theorem 1.2.15. - O

In the symmetric context, we can recover an analogue of this corollary for €, ., P(r)>".
However, the operations —(—, ..., —) do not preserve @ ., P(r)*. We thus need to
force the symmetry, and then to sum on every possible positions of ¢i, ..., ¢, in order
to retrieve a I'(PreLie, —)-algebra structure.

Proposition 1.2.17. Suppose that K is a field and let P be a symmetric dg operad such
that P(0) = 0. Then L(P) = @,~, P(r)”" is endowed with a T'(PreLie, —)-algebra
structure defined by

p{qla s 7qn}7’11---77’n =

Z Z :tw"Y([)(l,...,60.—11(1),...760.—‘1(“,...,1)),

c€Sh(ri,...,rn) 1< << <u i1 ir
UJGSh*(1,...,50_1(1),...,50_1(T),...,1)

i1 ir

for elements of homogeneous arity p € P(m)*m, q1 € P(s1)%1,...,q, € P(sp)=n and

where we have setr =Y .1, (G1,.--,q,) = (@1, @1, Gns- -, Gn) and (31, ...,5,) =
T1 Tn

(S1y.eyS1y vy Sny---58n). The sign is induced by the commutation of Gy,...,q, to

1 Tn
To1(r)s - Qo—1(1y- We also set p{qr, - qnfrywn = 0 if u < ri+ -+ 1n. The
weighted brace operations are then extended to the sum €D, ., P(r)> by using Formula
(v) of Theorem 1.1.3.
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Proof. We first prove that these operations preserve £(P). Let p € P(m)*,q €
P(s1)%1, ..., qn € P(s,)%n and 71,...,7, > 0. Notice that since we have

p{q1? L 7qn}7"1,...,rn - p{q17 <5 Qn, 1}r1,...,rn,m—(r1+--~+7’n)7

we can suppose that m =r; +---+r,. We then have

p{Q1> e 7Qn}r1,...,rn == Z Z Tw- ’7(p(qa—1(1)7 s 760—1(7“)))'

O'ESh(Tl,...,T‘n) weSh*(EU_l(l),,..,Eo_l(r))

Let 1 € Xg,py4tsnr- Foragiven o € Sh(ry,...,r,), we write yw = w-v(m,...,7.)
where v € X, 11 € Zga_l(l), C, T € Ega_l(r),& € Shye(5(uo)y-1(1)s - - -+ 5(wo)-1(r))- We also
have set v(7y, ..., 7.) to be the composite of 7 @ - - - @ 7,. with the corresponding blocks

permutation given by v € Y.,.. We obtain

pw - Y(P(@-1(1ys -+ 5 Qo1(r))) = 9 YP@or-1(1)s - - Qwo)-1(r)))

as p,qi,--.,q, are invariants. We now write vo = 7 - (71 & --- ® 7,.) where g €
Sh(ry,...,r), 71 € Xy, ..o, T € X, . We thus obtain

He - ’Y(p@rl(m e a@rl(r))) =w- ’Y(p(%fla)» e 76&*1(7“)))'
We thus have proved that

pe(pfa - tnter) =

Z Z +w - ”7(]9(6571(1), ce ,6571(7”»)

EGSh(T‘l,...,T‘n) C)Gsh*(gafl(l),...,5571“))

=p{a, - @utre, -

The operations —{—, ..., =}, then preserve L(P).

We now prove formulas of Theorem 1.2.6. We can immediately check that formulas
(1) — (v) are satisfied. The commutation with the differential is also satisfied since
the operadic structure is compatible with the differential. It remains to prove formula
(vi) of Theorem 1.2.6. We first note that the theorem holds if K = Q. Indeed, in
that case, the trace map Tr : S(PreLie, —) — I'(PreLie, —) induces an isomorphism
of monads. We thus only need to prove that the I'(PreLie, —)-algebra structure is
induced by a pre-Lie algebra structure. This presumed pre-Lie algebra structure is

given by -
plahi=Y > w-(poia),

1=1 weSh«(1,...,n,...,1)
3

where p € P(m)*" and ¢ € P(n)**. We then recover the pre-Lie algebra structure
given in [LV12, §5.3.16]. We now need to prove that the operations —{—,..., =} 1
coincide with the symmetric braces —{—, ..., —} induced by the pre-Lie operation (see
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Definition 1.1.1). It is equivalent to prove the identity

p{qb ce aQn-i-l}L...,l = p{Q17 ce 7(]n}1,...,1{Qn+1}1 _Z ip{Ql? ce 7qk{Qn+1}17 CIE 7qn}1,...71-
k=1

This follows from the associativity of the operadic composition. More precisely, the
term p{q1,...,qn}1..1{qn+1}1 is composed of two types of operadic composition. Ei-
ther ¢,41 is in the same level as ¢i, ..., g,, which will give exactly p{q1, ..., ¢n+1}1..1
by definition, or ¢, 1 will be attached to one of ¢, . .., g,. These last terms are removed
in order to retrieve p{qi,... . qnt1}1,. 1-

We now prove the general case. Consider elements p, q1, . .., Gn, f1,- - - fm I €D, P(r)>
which are homogeneous in degrees and in arities, and r,...,7,,51,...,5n > 0. We
need to compute p{q1,...,qn}r,..on{fis- -, fin}si.. s, and to find the right hand-side
of Theorem 1.2.6. We consider the symmetric sequence My, defined over any ring K,
spanned by abstract variables P, Q1,...,Q,, F1,..., F,, of the same arities and degrees
as P, qi,---sqn, f1,---, fm and endowed with a trivial action of the symmetric groups.
We have an obvious morphism of symmetric sequences My — P which sends P to p,
the );’s to the ¢;’s and the F}’s to the f;’s. We thus have a unique morphism of operads
F(My) — P which extends the morphism My — P, where F (M) is the free operad
generated by the symmetric sequence M. Because the presumed I'(PreLie, —)-algebra
structure is written in terms of the operadic composition, if formula (vi) of Theorem

1.2.6 holds for F(Mk), then it holds also for P.

We prove first that the formula is satisfied for F(Mz). Since the morphism of rings
Z — Q induces an injective morphism of operads F(Mz) — F(Mg) and since the rela-
tion (vi) of Theorem 1.2.6 is true in F(My), then it is also satisfied in F(Mz). By using
the morphism Z — K which gives rise to a morphism of operads F(Mz) — F (M),
we find that it is also satisfied in F(M).

We thus have weighted braces operation on €,., P(r)*. Since we work on a
field K, by Theorem 1.2.8, it implies that this structure endows @,., P(r)”" with a
structure of a I'(PreLie, —)-algebra. - O

Corollary 1.2.18. Suppose that K is a field and let P be a dg operad such that P(0) = 0
and P(1) = K. Then [[,5, P(r)™ is a complete T'(PreLie, —)-algebra.

Proof. Let L(P) = @,-, P(r)*r. Note that L(P) is a sub I'(PreLie, —)-algebra of
@, P(r)™. We have a filtration on it given by FyL(P) = @,-,,, P(r)* which is
preserved by the weighted brace operations. The completion with respect to this filtra-
tion is exactly [] -, P(r)* . By the remark after Definition 1.2.12, we have weighted

brace operations on [, P(r)* . Since we work over a field, this endows [],~, P(r)>"
with a structure of a I'(PreLie, —)-algebra by Theorem 1.2.8. O

1.2.2 The gauge group

We can now define an analogue of the circular product given in [DSV16] using the
weighted brace operations. Before doing so, we adopt the following notations. Let L
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be a complete I'(PreLie, —)-algebra and L, = K1&® L. We extend the weighted braces
—{— =} LT — Loon Ly x L*™ by setting

ifr,=1and Vk # 4,7, =0

_ ) Y
1{y1,...,yn}m ..... Tn_{o fry+--+r,>1

for every y1,...,yn, € L. We can check that all the formulas from Theorem 1.1.3 are
still satisfied if we take x € L.

Definition 1.2.19. Let a € Ly and p € L°. We set

—+00

a®(L+p) =) afph

n=0

Note that this quantity is well defined since L is complete, and because 1{y},, =0
as soon as n > 2.

By applying this definition in the case Q C K and using the weighted braces given
by Remark 1.2.9, we retrieve the usual circular product given in [DSV16].

Remark 1.2.20. One can see that we have 1 © (1+p) =1+ pu=(1+u) ©1 so that
1 is a unit element for ©. We thus have

+o00o
‘v’u,VELO,(l—i-,u)@(l—l—V):1+V+Zu{y}n,

n=0

which shows that ® preserves 1 + L.

Lemma 1.2.21. The circular product ® is associative, in the sense that for all o € L,
and p,v € LP,

(ae@(l+p))e(l+v)=ae (1+u) o (1+v)).
Proof. Let o € Ly and p,v € L°. We first have

(ae(l+p))e(l+v) = (Za{u}n> ©(1+v)

n=0
—+00

= Z afpitn{v}y.

n,p=0

On the other hand, we have
+oo
a®((l+p)@(1+v) = a® 1+V+Zu{V}n>

= Za{u—i-z,u{u}n} :

p
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We thus need to prove that

Z afptn{rv}y, = Za {V+ ZM{V}n} '

To prove this identity, we use formula (vi) of Theorem 1.1.3:

T 2 PR S 1 171 WA % W

P:6+Z?:1 at
which gives
+o00 400 +o0 P 1
doofuh{vh =23 Y. Solp{vlau{vtanvh s
n,p=0 n=0 p=0 B=0 p—B=3""_, ai

In this sum, because of the symmetry, some terms occur several times. For a given
p and 3, we count the number of partitions of p — § = al +--- 4 a" of the particular

form rial + - + 7,00 We get n(al, ..., a") = n,"—'v,q, for this number. We then have
1
—7’1' o ‘a{u{y}al, cow{vta, oo p{vtae, o p{vtad v s =
! A
O‘{M{V}&la . ,,u{l/}aq, V}T1,~-~,7”q,ﬂ'
We conclude by formula (v) of Theorem 1.1.3. O

We now need to find an explicit inverse for a given element 1 — p with p € L°.

Definition 1.2.22. Let t be a non-labeled tree with n vertices and u € L°. We set

Ot(p) = y(Ot(u®")),

for some choice of labeling of t.

Note that because O is X-invariant, this quantity does not depend on the choice of
a labeling for ¢. For example, let ¢t be the non-labeled tree

t =

Then
Ot(pn) = p{p{pte, p{uds, nraia

Lemma 1.2.23. For every u € L°, the element 1 — u has an inverse in 1+ L° for the
circular product © given by

(1=t =14 > Otp),

where rRT™ is the set of trees without any labeling and with at least one vertex.
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Proof. We first see that this defines a right-inverse for 1 — pu. Indeed, we first have that

(1—M)@<1+ > 0t(u)> =1+ > Ot(ﬂ)—ZN{ > Ot(u)} -

terRT* terRT™*

Then, as every t € rRT™ can be uniquely described by its root and branches, we have
that every term in the first sum at the right hand side can be uniquely described by an
element from the second sum, and vice versa. Formula (v) from Theorem 1.1.3 thus
give the result.

We now need to prove that it is a left inverse, which is slightly more difficult. We
compute

(1 + ) 0t(u)> O©(l—p)=1—p+ > Otp)+) ( > Ot(u)) {~ 1}

terRT* terRT* k>1 \terRT*

We focus on one term Ot(u) from the first sum, for some tree ¢ € rRT*. Recall
that a vertex of ¢ is called a leaf if it is not the root of ¢ and if it is connected to one
and only one other vertex in t. We denote by m; the number of leaves.

If my = 0, then t is the trivial tree: Ot(u) = p. This term does not appear in the
second sum (because k > 1) and vanishes with —p.

If m; # 0, the idea is to fix a number 1 < k < my, and to see which trees we can
obtain if we remove k leaves of t. These trees will occur in the second sum and give
(—1)*Ot(p) by adding k copies of —pu.

Let X, be the set of leaves of . Let X, be the set of non ordered subsets of X
with £ elements. When we remove k leaves, we need to take into account that we can
obtain the same tree by removing a different non ordered set of k leaves. For example,
if we take the previous tree

and if we look at the first branch, removing the vertex at the left gives the same tree
as removing the vertex at the right.

Let t},... 5" be all the different trees that we can get from ¢ by removing k leaves.
We denote by X:’;g the subset of X, formed by all the vertices that lead to i when
Pk )
removing them from ¢. We then have a disjoint union X;; = |_| X;’%
i=1
Each terms Ot} (p){—pu} will then give, among other terms, (—1)’“C’ard(Xf%€)(’)t(u).
my

When we take the sum over 4, we obtain (—1)*Card(X;)Ot(u) = (—1)k< i )Ot(,u).
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By taking the sum over k, we therefore obtain —Ot(u) which vanishes with Ot(u) given
by the first sum. |

From Lemma 1.2.21 and Lemma 1.2.23, we deduce assertion (i) of Theorem A:

Theorem 1.2.24. The triple G = (1 + L°, ©,1) is a group called the gauge group of
L.

1.2.3 Maurer-Cartan elements and the Deligne groupoid

We now aim to prove assertion (i) of Theorem A. We first make explicit the defi-
nition of the Maurer-Cartan set.

Definition 1.2.25. Let L be a dg T'(PreLie, —)-algebra. A given o € L' is a Maurer-
Cartan element if it satisfies the Maurer-Cartan equation:

d(a) + a{a}y =0.
We let MC(L) to be the set of all Maurer-Cartan elements of L.

Remark 1.2.26. In the case Q C K, we retrieve the classical definition:
1
d(a) + 5[04, al =0,

written with the dg Lie algebra structure on L.

As in the case of characteristic zero, we expect the gauge group to act on the
Maurer-Cartan set. Before seeing that, we define a new operation.

Definition 1.2.27. Leta € L, € L and 1+ u € G. We set

+0o0

a® (14 up) = Za{u,ﬁ}m.

n=0

Lemma 1.2.28. We have the following identities:

(co(+u){Bh = a0l +us+p{Bh),
aoffhho(l+p) = a0(l+pBoe(l+p),
dla©(1+p) = da)o1+p)+ (=) ao (1+pdpw).

Proof. By applying formula (vi) of Theorem 1.1.3, we find that

“+o00

(@@ @+m){Bh = > afut{Bh

n=0
+oo

- ZQ{/JJ’B}"J +ZO‘{N>M{5}1}n71,1

n=0
“+o00

= > o{p B+ p{Bhi}n

— 6 ® (L4 w8+ ulBh),
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as well as
+o0

oABhe(l+p) = > a{Bhiutm

m=0
+00

= Y ofB{utp g

p,q=0

= a0 (l+pmBe(l+pu).
Finally, by using the compatibility of d with weighted braces, we obtain,

doo+p) = 3 da){uh + (=S afn d(u)}a s
= d(@)©(1+m) + (-D)la® 1+ dp),

which concludes the proof of the lemma. O
We can now prove assertion (i7) of Theorem A.

Theorem 1.2.29. The gauge group G acts on the Maurer-Cartan set MC(L) by

(14+p)-a=(a+p{al —du)© (1 +p)° "
for all (1+ p) € G and o € MC(L).

Proof. We first need to prove that 5 = (1 + p) - « is indeed a Maurer-Cartan element.
For this, we first remark that applying d on each side of the equality d(p) = a +
p{ats — B ® (14 p), and by using that d(a) = —a{a}; and the previous lemma, we
have

d(f) ® (1 +p) = —afats — pl{af{ati}r +d(p){ati + 8@ (14 p;d(pw)).

Moreover, again by the previous lemma, we have

dipfatr = aofah +pfati{ah —Be (1 +p){ah
= ofah + p{afohih +{aabin =B (1 +pa) = B (1+ p;p{ah).

Then
dB)o(1+u) =000+ udp) -0 (1 +pa) =B 1+ up{at)+p{a, afr.

We note that p{o, a}ty; = 0. Indeed, if we take the notations of the proof of Theorem
1.2.6, we have that p{o,a}11 = I'(Prelie, ¥, 0.0)(OFs(e, e1,€3)) where |e] = 0 and
le1| = |ea] = 1 are formal elements. We explicitly have that

OFy(e,e1,e2) = Fy(e,e1,e2) 4+ ((12).Fy)(e1, e, ea) — ((13).Fy)(eq, 1, €)

—FQ(Q, €9, 61) — ((].2)F2)(62, €, 61) + ((13)F2)(€1, €9, 6).
Applying 1, q,« Will then give u{a, a};; = 0. We then finally have

dB)e(1+p) == +uBe (1+pu)).
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By the previous lemma, this gives

d(f) © (1+p) = =p{fhh @1+ u)

and then (d(8) + 8{8}) ® (1 + p) = 0, that is to say d(8) + S{}1 = 0 by composing
with (14 1)®~! on the right. We thus have proved that § € MC(L).

We now need to check that we have indeed an action of G on MC(L). We have that
1 + 0 acts trivially on MC(L), so we just need to prove that ((14+v)© (1 + u)) - a =
1+v)- (14 p) - a).

By hypothesis, we have the following equations:
d(p) = a+pfat = o (1+p),
dv)=p+v{fh —r@(1+v)
Let 1+ A=(14+v)@(1+pu) =14+ pu+vo (1+ p). We compute:
at+Mah =701+ = a+pfahi +ve (1+p){ah +dv)© (1+p)
—Bel+p) —v{fhe(+nu
= dp)+dv)e(1+u) +rve (1+ua)
v © (1+ppfoh) —ve (l+um e (1+p)
by the previous lemma. We then have

a+Mah—ve(l+v)e(1+u) = ﬁ%+d@ﬂﬂl+m+u©ﬂ+uﬂm»

which proves the theorem. O
We end this section with the definition of the Deligne groupoid.

Proposition-Definition 1.2.30. Let L be a complete T'(PreLie, —)-algebra. We let
Deligne(L) to be the category with MC(L) as set of objects and Morpeligne(r)(c, 5) =

{I+p)eG|(Q+p) a=4]
Then Deligne(L) is a groupoid called the Deligne groupoid of L.

Proof. 1t is a corollary of the previous theorem. n

1.2.4 An integral Goldman-Millson theorem

We conclude this part with an analogue of the Goldman-Millson theorem. This
theorem allows us to give a link between two particular groupoids when changing a dg
Lie algebra L to another one L which is quasi-isomorphic to L (see [GMS8S, §2.4]).

Let A be a local artinian K-algebra with maximal ideal my, where K is the field
of fractions of some noetherian integral domain K. Let L be a I'(PreLie, —)-algebra
(without any convergence hypothesis). If ® denotes the tensor product over K, then
L ® A is also a I'(PreLie, —)-algebra with the following definitions:
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(Lo AF = LF® A,
YOty @ ayy...,xp Ray,)) = Y(Ot(xy,...,2,)) R ay---ay,
dr®a) = dr)®a.
To retrieve our convergence hypothesis, we can consider the sub I'(PreLie, —)-
algebra L ® my. This I'(PreLie, —)-algebra has a filtration given by

F.(L®my) =Lem}y

which is 0 for n big enough, because m, is nilpotent. In particular, our series will be
reduced to finite sums.

Let Deligne(L, A) = Deligne(L®m,) the associated Deligne groupoid. Asin [GMS8S,
§2.3], we remark that Deligne(—, —) defines a bifunctor such that, for all morphisms
of I'(PreLie, —)-algebras ¢ : L — L and for all morphisms of algebras ¢ : A — A,
we have the following diagram

Deligne(L, A) —— Deligne(L, A)

| Jo

Deligne(L, A) — Deligne(L, A)

which is commutative.

We can now prove Theorem B.

Theorem 1.2.31. Let K be a noetherian integral domain and K its field of fractions.
Let L and L be two positively graded T'(PreLie,—)-algebras. Let ¢ : L — L be a
morphism of U'(PreLie, —)-algebras such that H°() and H'(p) are isomorphisms, and
H?(¢p) is a monomorphism. Then for every local artinian K-algebras A, the induced
functor ¢, : Deligne(L, A) — Deligne(L, A) is an equivalence of groupoids.

Proof. The proof is close to the one given in [GMS88, §2.5-§2.11]. By the same argu-
ments as in [GMS88, §2.5], we are reduced to prove the following. Let A be a local

artinian K-algebra with maximal ideal m4 and J C A be an ideal such that J-m4 = 0.
Then if the theorem holds for A/J, then it also holds for A.

Our first goal is to prove the same proposition given in [GMS88, §2.6], which con-
structs three obstruction maps o0q,01 and 0g. Let 7, : L ® A — L ® A/J be the map
induced by the canonical projection 7 : A — A/7.

We first define oy : Obj(Deligne(L, A/J)) — H?*(L ® J) which is such that
02(w) = 0 if and only if there exists w € Obj(Deligne(L, A)) with m,(w) = w.

Let w € Obj(Deligne(L, A/J)) C m4/J. Let @ € L' ® my be such that 7, (0) = w and
Q@) = d(@) + @{w}:. Then 7, (Q(®)) = 0 to that Q(w) € L?* ® J. By using that
J-my = 0, we obtain

dQW)) = dw{wh —w{d@)h
—w{wh{wh +w{o{whh
= gj{&,&}m
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This implies that Q(@) € Z*(L®7J). Let @ € L'®@my be some other element such that
7.(&0") = w. In particular, @ — &' € L' ® 3. We then have, using again that J-my4 = 0,

QW) - QW) = dW -w)+ (W -—w{w —wh
O — b + (@ — @) {ah
=A@ D).

We then let os(w) to be the class of Q(@) in H*(L ® J). Suppose that os(w) = 0.
Then by definition, there exists some ¢ € L' ® J such that Q(@) = d(v). We can
check that @ := @ — ¢ € Obj(Deligne(L, A)) and 7.(w') = w. In the converse direc-
tion, we obviously have that if w = 7,.(@0) with @ € Obj(Deligne(L, A)), then os(w) = 0.

We now prove the following analogue of the lemma given in [GMS88, §2.8]. For all
acl'®@my,nel’@my and u € L° ® J, we have

(I+u+n)-a=1+n) a—du).

Let 5= (1+n)-a. We have

+o0o

(B—dw) e +utn) = Y (B—dw){utnk

n=0
+oco n

= 338 - dw) b

n=0 k=0
Since J-my4 = 0, and because u € L' ® J and n € L° ® my, the terms with n # 0 and

k # 0 are 0 by definition of the I'(PreLie, —)-algebra structure in L ® A. We then
have

B—dw)@1+utn) = B—du)+> B{nt

= BO(1+n)—du)
= a+n{a} —d(n) —d(u)
= a+ (u+n)f{at —du+n)

which finally gives
(L+n)-a—du)=(a+@+n{ah —du+n))e@+utn) ' =1+u+tn) - a

Let & € Obj(Deligne(L, A/J)). We let m,1(¢) to be the category whose objects
are elements w € Obj(Deligne(L, A)) such that 7, (w) = £, and with morphisms the
gauge group elements v € Deligne(L, A) such that m,(v) = 1. We now construct a map
o1 : Obj(m;71(&)) x Obj(m;71(€)) — Z'(L ® J) such that o;(a, 3) = 0 if and only if
there exists a morphism v in 7, *(€) such that v(a) = 8.

Let n € Z'(L ® J). For every a € Obj(m;1(£)), we have that Q(a +7n) = Q(a) +
af{nti +n{n}t =0, since J- my = 0. We then have that o +n € Obj(Deligne(L, A)),
and m.(a +n) = £ We thus have an action of the group Z'(L ® J) on the set
Obj(7;1(£)). This action is simply transitive. Indeed, let a, 8 € Obj(Deligne(L, A))
be such that m.(a) = m.(8) =& Thena—pf € L'®J and d(a— ) = Q(a)—Q(B3) = 0.
The element 7 := a — 3 is then an element of Z'(L ® J) whose action on 3 is «. Since
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a— [ =0 if and only if a = (8, the action is indeed simply transitive. We then can set
o1(a, B) to be the class of a — 3 in H'(L ® 7).

Now, if there exists some element 1 + u € G in the gauge group of L ® m, such that
(14+u)-a = g and 7. (1+u) = 1, we then have, according to the analogue of the lemma
given in [GMS8S, §2.8], that § = (1 + u) - @ = a — d(u) so that o;(a, ) = 0. In the
converse direction, if o;(, 8) = 0, then there exists v € L°® J such that a — 3 = d(u).
By using the lemma again, we find that (1 +u) -« = f.

Let &, 3 € Obj(Deligne(L, A)) and a = 7, (&), 8 = () be such that there exists
an element 1+4u of the gauge group of L&m /T with (1+u)-a = 3. Let 7,1 (1+u) be the
set of gauge group elements 1+ in L&m 4 such that (1+)-a = 3 and m,(1+1) = 14u.
We finally construct a map og : 7, (1 +u) x 7,1 (1 +u) — H°(L ® J) which satisfies
the following. For every 1+ u,1+ @ € ;' (1 + u), we have that og(1 +u,1+a') =0
if and only if u = u'.

We define a simply transitive action of H°(L ® J) on the set 7, (1 +u). Let 1 +u €
7, (1+u) and let w € L ® J. We have that

(I+a+w) -a=(1+7)-a—dw)=p—dw).

Therefore, if w € H'(L ® J) = Z°%(L ® 3), then (14 @ + w) - & = B. This then
defines an action of H*(L ® J) on 7;}(1 + u). Let 1 + 4 € 7' (1 + u). We set
w=o0014+u,1+d):=u—u € L®7J. Then

dw) =d(og(l+u,1+7)=(14d)-a- (140 4+w)-a=p—-=0.
We then obtain that w € H°(L ® J) is the unique element which sends 1+ u to 1+ '

The action is then simply transitive, and we have constructed oy.

This then proves an analogue of the proposition given in [GM88, §2.6]. The other
parts of the proof only use these three obstructions maps and do not directly use the
structure of L. We can then follow exactly the same arguments in [GMS8S8, §2.11] to
obtain the result.

O

Definition 1.2.32. Two positively graded I'(PreLie, —)-algebras L and L are quasi-isomorphic
if there exists a zig-zag of morphisms of I'(PreLie, —)-algebras

L=Ly—ILi¢<—+—Ly 1—L,=1

in which each morphism induces an isomorphism in cohomology.

Corollary 1.2.33. If L and L are quasi-isomorphic, then for all local artinian K-
algebras A, the groupoids Deligne(L, A) and Deligne(L, A) are equivalent. More pre-
cisely, we have a zig-zag of equivalence of groupoids

Deligne(L, A) — Deligne(L;, A) +— - -- — Deligne(Ly,_1, A) +— Deligne(L, A)

which 1s natural in A.
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1.3 Application in homotopy theory for operads

The goal of this section is to establish Theorem C, which gives a computation of
mo(Map(B°(C), P)) where C is a ¥,-cofibrant coaugmented cooperad, P an augmented
operad and B¢ the cobar construction (see [Frel7b] or [LV12] for a definition of this
construction). In the case of a field of characteristic 0, it can be expressed in terms of
the Deligne groupoid with the structure of dg Lie algebra of Homs(C,P). We extend
this result using a structure of I'(PreLie, —)-algebra that underlies this dg Lie algebra
structure.

In §1.3.1, we define infinitesimal k-compositions and k-decompositions that gener-
alize the usual infinitesimal composition and decomposition operations given in [LV12,
§6.1]. These operations will be used in the next section to write more easily weighted
brace operations of the convolution operad.

In §1.3.2, we recall the definition of the convolution operad Hom(C, P), as given in
[LV12, §6.4.1], and study the I'(PreLie, —)-algebra structure of Homg(C,P). In the
same way that infinitesimal composition and decomposition can be used to express the
pre-Lie algebra structure of the convolution operad (see [LV12, Proposition 6.4.5]), we
will use infinitesimal k-compositions and k-decompositions to compute weighted brace
operations of the convolution operad.

In §1.3.3, we just use a cylinder object of B¢(C) given by Fresse in [Fre09b, §5.1] to
get our result: the quotient of Homy (C, P) by the gauge action gives mo(Map(B¢(C), P)).

1.3.1 Infinitesimal compositions and decompositions of an op-
erad and a cooperad

We first introduce some definitions which will be useful for the computations.

Let M and N be two symmetric sequences such that N(0) = 0. Recall that we
have a monoidal structure on the category of symmetric sequences defined by

Mo N(n) = P M(k) ©s, ( D mdE s, V) © @ N(ik))) :

k>0 i1+ tig=n

with as unit the symmetric sequence I defined by

K ifn=1
](”):{ 0 ifn#1l

Every elements of M o N(n) can be identified as a tree of the form:
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N

yl e yn

0

where x € M(n), y1 € N(r1),...,yn € N(r,), and where 1 < 47 < 3" r; are labels
which represent a permutation of ¥, .4, .

Note that we can write M o N(n) without quotients by the group permutations by
taking a choice of set of representatives. This set is given by pointed shuffie permuta-
tions (see conventions):

MoN(n):@M(k)®< ar) N(il)®~--®N(z’k)®K[Sh*(i1,...,ik)]>.

k>0 i1+ Hip=n

We now generalize the definition of the infinitesimal composition/decomposition
defined in [LV12], in order to write some formulas in a more convenient way.

Definition 1.3.1. Let M and N be two symmetric sequences. For all k > 0, we define
a new symmetric sequence denoted by M oy N called the k-infinitesimal composite of
M and N defined, in each arity n, as the submodule of M o (I & N)(n) spanned by
trees where exactly k elements at level 2 are in N, and the others in 1.

Let M, M’', N and N’ be symmetric sequences. One can easily check that if we have
morphisms of symmetric sequences f : M — M’ and g : N — N’, then we have a
morphism f oy g : M ogy N — M’ oy N' induced by f o (id; & g).

Let P be an operad with composition v : PoP — P and unit n : I — P, and let
C a cooperad with coproduct A : C — C o C and counit ¢ : C —> I. We will suppose
that P is augmented, i.e. the unit n : I — P admits a retraction 7 : P — 1. We
then have that there exists a symmetric sequence P with P ~ I @ P such that the
first projection on P is given by w. Similarly, we suppose that C is coaugmented, i.e.
the counit € : C — [ admits a section s : I — C. We then have that there exists a
symmetric sequence C with C ~ I @ C such that the first projection is given by e.

In the following, we assume that C(0) = P(0) = 0 and C(1) = P(1) = K.

We give an extension of the usual infinitesimal composition and decomposition
operations given in [LV12, §6.1] for k = 1.

Definition 1.3.2. Let k > 1.

- We define the infinitesimal k-composition in P as
Yy 2 P oy P(n) —— PoP(n) —— P(n),

where the first map is the inclusion of P O (k) PinPoP.
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- We define the infinitesimal k-decomposition in C as
Awy : C(n) —2 5 CoC(n) — C oy C(n),
where the last map is the projection of C o C onto 5o(k) C.

Because C is coaugmented, we have that the coproduct A : C — C o C preserves
the isomorphism C ~ I & C in the following sense. We have the isomorphism

CoC~Iol®Col®IoCoEDCowC.

k>1

Then, we get that the restriction of A_on I and on C are such that A : [ — Jo
and A :C — Col®IoC® @Di>1C oy €. We can then define the infinitesimal

k-decompositions on C by

A(O)ZELEOI@IOE@GBEO(@E—»EO]@]O@,

k>1

Ay .C 2 EOI@IOE@@aOU@)z —— CouC,

k>1

for all £ > 1.

1.3.2 ['(PreLie, —)-algebra structure of the convolution operad

Let M and N be two symmetric sequences of differential graded K-modules. We
define a new symmetric sequence Hom(M, N) in dg K-modules by Hom(M, N)(n) =
Hom(M (n), N(n)), the differential graded module formed by the homogeneous mor-
phisms f : M(n) — N(n). The differential on Hom(M, N) is given by

d(f) =daro f = (=1)* D f ody,
for all f € Hom(M, N). The action of ¥,, on Hom(M (n), N(n)) is defined by
Vo € M(n), (o f)(x) =0 flo™" ),
for all o € X,,.

Proposition 1.3.3 (see [LV12]). Let C be a cooperad and P be an operad. Then
Hom(C,P) has the structure of a dg operad called the convolution operad of C and P.

We recall the operad structure on Hom(C,P). For f € Hom(C,P)(k), 1 €
Hom(C,P)(i1),...,g9x € Hom(C, P)(ix) the composition v(f ® g1 ® - - - ® g ) is given by
the composite
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C(n) —2= CoC(n) — C(k) ®C(i1) @ --- @ C(iy) @ K[id]
lf®g1®~~-®gk®id

P(k) @ P(i1) @ - - @ Plir) @ Klid] —— P oP(n) —— P(n)

where n = E ip-

p

We have Homs, (C(n), P(n)) = Hom(C(n), P(n))*", and we set

Homy(C,P) HHomg P(n));
n>1
Homy(C,P) = H Homy, ( P(n)) C Homg(C, P).
n>2

Then, according to Corollary 1.2.18, we have that Homy(C,P) is endowed with a
complete I'(PreLie, —)-algebra structure. We also have the isomorphism
Homy(C, P) ~ K@ Homy(C, P),
so that any morphism in Homy(C, P) can be identified with a morphism in Homy(C, P)
which is 0 on C(1) =
We can explicitly describe the weighted braces with one input of Homy(C,P) in

terms of infinitesimal decompositions and compositions.

Lemma 1.3.4. Let f,g € Homg(C,P). Then f{g}w is given by the composite

I
~
o
z
kS

(k)

C Y Copy € L9 Doy, P25 P

In particular, we retrieve the well-known pre-Lie algebra structure on Homy(C, P)
given by the composite

— A — .
T2, o C Y% Boyy P 20 P

as shown in [LV12, Proposition 6.4.5] (note that here we consider left actions).

Proof. By definition of the I'(PreLie, —)—algebra structure of Homy(C, P) (see Corol-
lary 1.2.18), it is sufficient to prove it on €p,., Homsy, (C(r),P(r)). We write § =
g1 + -+ gp where g; € Homg, (C(n;), P(n;)) with n; # n; whenever i # j. Since the
identity we need to prove is linear in f, we can suppose that f € Homy, (C(n),P(n)).

We then have that _ B
f{g}k = Z f{ma-'wg_p}h ..... rpe
ri4-+rp=k

If we denote by ~ the operadic composition in the operad Hom(C,P), and if we set
hi,...;hie =01, .., G1,- - Gpy-- -5 0p and S1,...,8, = Ny, ..., N1,...,Np,...,Ny, then
H—/ A/—/ - /

v ~~
T1 Tp T1 Tp
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by definition of the I'(PreLie, —)-algebra structure of P, -, Homs, (C(r), P(r)) (see
Proposition 1.2.17), we have

7{%7 e ug_p}m ..... rp —

> > tw V(L Gorqy - Tomrr - 1):

c€Sh(r1,...,rp) 1<i1 << <n i1 i
wESh*(l,...,scfful) ..... s

i i
For a given o € Sh(ry,...,r,) and w € Sh.(1,...,8,-11),-..,8c-1(k),---,1), we can

i1 ik
see the corresponding term in the sum as the composite

C(m) —2— CoC(m) — C(n) @C(s,-11)) @ -+ @ Cl85-1(0)) @ K[w]
l?@ﬁgfl(l)@)m@ﬁfl(k)®z‘d

P(n) ® P(Sa—l(l)) ® s ® P(So—l(k.)) ® K[w] —> 'P O P(m)

! > P(m)

where m =n+ (ny — 1)ry + -+ - + (n, — 1)r,,, and where we omits some unit elements.
Summing over the w’s and using the decomposition of C o C(m) and P o P(m) just
before Definition 1.3.1 will then give the composite

?®E0—1(1)®'“®5071(k>

C(m) —2— CoC(m) PoP(m) —— P(m)

where we omit, again, the unit elements. Note that, since f and the h;’s are 0 on
C(1), this composite is also 0 on C(1). Summing on all o € Sh(ry,...,r,) will give the
desired composite. O

Theorem 1.3.5. The circular product of two elements f =1+ f,g =147 of the
gauge group of Homyx(C, P) is given by

feg:C—25CoC L% pop 2P,

Proof. Because fj; = g = 1, we have that (f ® g);; = 1. We thus need to show the
equality on C. Recall that we have infinitesimal decompositions on C denoted by A,
and A, for £ > 1 such that Alf = A ® @kzl Agy. The map Ay will give f+7,
and each A will give f{g}), according to the previous lemma. We thus have that the
composite in the statement of the theorem gives

L+ f+Y fah
k>0

which is exactly f © g. O]
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1.3.3 Computation of my(Map(B“(C),P))

We now extend the computation of mg(Map(B¢(C),P)) on a field K with positive
characteristic. In this last section, we chose to work with a homological convention to
follow the conventions in the literature. Note that this does not change anything on
the results of the previous sections.

Recall that we can give an explicit cylinder object for B¢(C), where B¢ is the
cobar construction of C, when C is X,-cofibrant (see for instance [Fre09b] or [LV12]).
Explicitly, let K = Ko® @ Kot @ Ko where |0°| = |o!| = —1, [¢!] = 0 and d(c"!) =

o' — 0% Then there exists a derivation of operads O such that the free dg operad

(F(K ®C),0) is a cylinder object for B¢(C). We refer to [Fre09b, §5.1] for an explicit
construction of 0 and a proof of the previous statement.

Theorem 1.3.6. Suppose that C is Y,-cofibrant. We then have a bijection:
mo(Map(B¢(C), P)) ~ moDeligne(Homs(C, P)).

Proof. Recall from Fresse (see [Frel7b, Theorem 3.2.14] for instance) that
mo(Map(B¢(C), P)) ~ (Mor(B¢(C), P),~p) where ~y, is the homotopy relation in the
category of symmetric operads. Recall also that the data of a Maurer-Cartan element
« in Homy(C,P) is equivalent to give a morphism of operads ¢, from B¢(C) to P
(see [Fre09b] or [LV12]). We just need to show that the action of the gauge group on
the Maurer-Cartan set of Homy(C, P) from one Maurer-Cartan « to an other one 3 is
equivalent to give a homotopy from ¢, to ¢g.

Let 14+ be an element of the gauge group. We define a morphism h : Cyl(B¢(C)) —
P via h: K®C — F(K ®C) by setting

h(o® ® ) = a(y),

ho' ®v) = B(7),
ho” ® ) = A7),

where v is some element of C. We claim that (1 + )\) - = 3 if and only if A is a
homotopy from ¢, to ¢z. Accordingly, we must prove the equivalence

dAN) =a+Ma} -1+ <dh)=0
where d is the differential of Mor(B¢(C), P).

Because a and [ are Maurer-Cartan elements, and by definition of 0, the second
equality is always satisfied for 0° ® v with ¢ = 0,1 and v € C. We just need to check
this equality on terms o™ ® ~ for any v € C:

d(h) (0" @v) = d(h(c” @7)) = hI(o” @ 7))
= d(A(7)) — Ad(v)) — aly) + B(7)
~Mahi(v) + (B 1+ N)(y) - B7H)
= dN)(y) —a(y) = Mah(y) + e 1+ A)(y).

We then have the desired equivalence. O



Chapter 2

Pre-Lie algebras up to homotopy with
divided powers and homotopy of operadic
mapping spaces

The purpose of this memoir is to study pre-Lie algebras up to homotopy with di-
vided powers, and to use this algebraic structure for the study of mapping spaces in
the category of operads. We define a new notion of algebra called 'APL.-algebra
which characterizes the notion of I'(PreLlie.,, —)-algebra. We also define a notion of
a Maurer-Cartan element in complete 'AP L -algebras which generalizes the classical
definition in Lie algebras. We prove that for every complete brace algebra A, and for
every n > 0, the tensor product A ® X N*(A") is endowed with the structure of a com-
plete TAP L .-algebra, and define the simplicial Maurer-Cartan set MC,(A) associated
to A as the Maurer-Cartan set of A ® XN*(A®). We compute the homotopy groups of
this simplicial set, and prove that the functor MC,(—) satisfies a homotopy invariance
result, which extends the Goldman-Millson theorem in dimension 0. As an application,
we give a description of mapping spaces in the category of non-symmetric operads in
terms of this simplicial Maurer-Cartan set. We establish a generalization of the latter
result for symmetric operads.
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Introduction
The usual category of topological spaces comes equipped with a functor Map,,,(—, —) :

Top® x Top — sSet which endows 7 op with the structure of a simplicial category
(see for instance [Frel7b, §2.1.1]). This functor can be used in order to handle higher
homotopies in the category Top. For every topological spaces X,Y, the connected
components of Mapr,,(X, Y) are in bijection with homotopy classes of morphisms
X — Y, while the homotopy groups encode higher homotopy relations. This ap-
proach allows us to use tools from algebraic topology in order to study homotopy
morphisms from X to Y. The functor Mapr,,(—, —) is defined as follows. For every
X € Top, we define two functors X ® — : sSet — Top and X~ : sSet” — Top by

X®K:=Xx|K|; X :=Mory,,(|K|,X),
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for every X € Top and K € sSet, where |K| € Top denotes the geometric realization
of the simplicial set K. For every X,Y € Top and K € sSet, we have the isomorphism

Mor7o, (X @ K,Y) =~ Mor,(X, YF).

We then define Mapr,,(X,Y") as the simplicial set Mor7,,(X ® A®,Y'), where, for every
n > 0, we denote by A" the fundamental n-simplex.

In a general model category C', we have an analogue of the functors X ® — and X .
Such functors are defined by giving the image of A™ for every n > 0. The cosimplicial
set X ® A® is called a cosimplicial frame associated to X, while X2° is called a simpli-
cial frame associated to X (see for instance [Frel7b, §3.2.2, §3.2.7]). However, we only
have a zig-zag of weak-equivalences of simplicial sets between Morg(X ® A®Y) and
Morc (X, Y2") instead of an isomorphism, provided that X is cofibrant and Y is fibrant.
This still allows us to construct a simplicial set Map.(X,Y), which is unique up to
a zig-zag of weak-equivalences. As in Top, the connected components of Mapq(X,Y)
are in bijection with homotopy classes of morphisms X — Y.

In this memoir, we provide an approach in order to study the homotopy of such
mapping spaces in the category of non-symmetric operads and in the category of sym-
metric operads as well, where in both cases we consider operads defined in the category
of differential graded K-modules (dg K-modules for short).

We review the known results in characteristic 0 before explaining our results which
deal with the positive characteristic context.

State-of-the-art in characteristic 0

A comprehensive study of the homotopy type of a mapping spaces in the category
of symmetric operads has already been done in the case char(K) = 0. Let C be a
coaugmented connected cooperad and P be an augmented connected operad. The
computation of the homotopy groups can be deduced from a description of a map-
ping space Mapyp,0(B°(C),P) given in [Yall6], in the context of properads. For this
purpose, we use an explicit simplicial frame P2" associated to the operad P, given by:

PA =P Q(A%),

where, for every n > 0, we denote by Q*(A™) the Sullivan algebra of de Rham polyno-
mial forms on A" (see for instance [BG76, §2.1]). The n-simplices of Mapy,0 (B¢(C), P)
then correspond to elements in Homssgeq, (C,P)@Q*(A™) which satisfy some equations,
where ® is the complete tensor product associated to the complete filtered dg modules
Homygeq, (C, P) and 2*(A™). These equations can be written by using the Lie algebra
structure on Homgeq, (C,P) induced by its pre-Lie algebra structure (see for instance
[LV12, §6.4.4] for a definition of the pre-Lie product). We recall the definitions in the
paragraphs to follow.

Recall that if L is a complete Lie algebra, then a Maurer-Cartan element is an
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element 7 € L_; such that

d(t) + %[7‘, 7] = 0.

We denote by MC(L) the set of Maurer-Cartan elements in L. Note that every 7 €
MC(L) induces a differential d, defined by

We let L7 be the dg K-module L endowed with the differential d,. Using that Q*(A") is
endowed with the structure of a commutative algebra for every n > 0, the dg K-module
LRQ*(A™) is endowed with the structure of a Lie algebra. We define the simplicial
Maurer-Cartan set associated to L as

MC.(L) = MC(LRQ(A®)).

From [Yall6, Theorem 3.12], for every coaugmented cooperad C, and for every aug-
mented operad P, we obtain the following description:

Mapy,o,0 (B°(C), P) = MCq(Homsseq, (C, P)).

The computation of the homotopy groups of the simplicial set Mapy, (5°(C), P)
can be deduced from the general computations of the homotopy groups of MC,(L)
associated to a given complete Lie algebra L. These computations have been made
in [Berl5, Theorem 1.1]. Explicitly, if L is a complete Lie algebra, then, for every
7 € MC(L) and k > 0, we have the isomorphism

i1 (MCo(L), 7) = Hy(L7),

where Hy(L") is endowed with the group structure BC'H given by the Baker-Campbell-
Hausdorff formula.

The computation of the connected components of Mapy,,,(B¢(C), P) can be achieved
by using the pre-Lie deformation theory developed in [DSV16]. Recall that a pre-Lie
algebra is a dg K-module L endowed with a linear morphism % : L ® L — L such that

(zxy)kz—zx(y*z)= (D) ((zx2) %y — 2% (2%7)).

In particular, any pre-Lie algebra L is endowed with the structure of a Lie algebra with
the bracket [z,y] = 2 xy — (=1)#¥y x 2. In [DSV16], the author generalized the Lie
deformation theory to the pre-Lie context. Explicitly, a Maurer-Cartan element 7 in a
pre-Lie algebra L is an element 7 € L_; such that

d(t)+7+7=0.

The gauge group (Lo, BCH,0) can also be written in terms of pre-Lie operations.
We consider the subset 1+ Ly C K& L. Under some convergence hypothesis, we define
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the circular product ® : L x (1 + Ly) — L by

1
x©(1+y)zzﬁx{y,---,y},

n>0 n

for every x € L and y € Lo, where we denote by —{—,...,—} the symmetric brace
operations associated to L (see [OGO08] or [LMO05]). We can restrict this product to an
operation on 1+ Ly defined by

1
l+z)eo(14+y)=14+y+ —x{y, ...,
1+z)®(1+y) y ;n! {y,.. .y}

n

for every x,y € Ly. Then the triple (1 4+ Ly, ®, 1) is a group isomorphic to the gauge
group (see [DSV16, Theorem 2]). The group (1 + Ly, ®, 1) also acts on MC(L) via

(I+p) 7=(T+px7—d(r)© (1 +p)° "

We define the Deligne groupoid Deligne(L) as the category with MC(L) as set of ob-
jects, and (1 + Lo, ®, 1) as hom-sets.

Using a cylinder object associated to B¢(C) (see [Frel7b, Theorem 3.2.14]) and [DSV16,
Corollary 2|, we obtain a bijection

moMapsp,0 (B(C), P) ~ moDeligne(Homsgeq, (C,P)),

where the right hand-side denotes the set of isomorphism classes of Deligne(Homsgeq, (C, P)).

Objectives and Results

If char(K) > 0, then the simplicial set P ® Q*(A®) given in [Yall6] is no longer a
simplicial frame associated to P, as the cohomology of Q*(A™) is not 0 for every n > 0.

The first description of moMapyp,0(B°(C),P) has been generalized to the posi-
tive characteristic context in [Ver23] by using a I'(PreLie, —)-algebra structure on
Homygeq, (C, P). Recall briefly that a I'(PreLie, —)-algebra is a dg module endowed

with operations —{—, ..., =}, ., defined for every integers r1,...,r, > 0, and which
mimic the operations
1
37{3/1, s 7yn}7"1 ..... Tn Hiri!x{yh oY, Yny - 7yn}
71 Tn

This notion has been studied in the non-graded context in [Cesl8], and general-
ized to the graded context in [Ver23]. Following the formulas of [DSV16], the pre-
Lie deformation theory can be generalized to a deformation theory controlled by
['(PreLie, —)-algebras, which is valid over a ring with positive characteristic. For
every I'(PreLie, —)-algebra L, we thus have a notion of Deligne groupoid Deligne(L)
(see [Ver23, Proposition-Definition 2.30]). Using a I'(PreLie, —)-algebra structure on
Homyseq, (C, P) (see [Ver23, Corollary 2.18]), we retrieve, by [Ver23, Theorem 3.6], a
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bijection o
moMapsp,0 (B(C), P) ~ moDeligne(Homsseq, (C, P)).

In this memoir, we construct an explicit cosimplicial frame associated to B¢(C), in
the case where C is a non-symmetric cooperad. Explicitly, for ever n > 0, we construct
a twisting derivation 9" on the operad F(C ® L™t N,(A"™)) such that

BY(C) @ A* = (F(C® S7IN,(A%)), 0°)

is a cosimplicial frame associated to B¢(C) where N,(A") is the normalized chain com-
plex of the simplicial set A™. The n-simplices of a mapping space from B¢(C) to P can
then be identified with elements of Homgeq, (C,P) ® X N*(A™) which satisfy some equa-
tions. Our purpose is to interpret these equations as Maurer-Cartan equations. Our
main ideas are the following. We deal with I'(PreLie.,, —)-algebra structures, where
PreLie,, denotes the operad that governs pre-Lie algebras up to homotopy. The key
point is that if A is a brace algebra and if N is an algebra over the Barratt-Eccles operad
&, then A® N is a I'(PreLies, —)-algebra. Using this result with A = Homgeq, (C, P)
(which is a brace algebra by [LV12, Proposition 6.4.2] and [GV95, Proposition 1]) and
N = N*(A") (see [BF04]) precisely give the desired equations.

The PreLies-algebras, also called pre-Lie algebras up to homotopy, have been
studied in [CLO1]. The author characterized the data of a PreLie,,-algebra structure
on L as the data of brace operations which satisfy some identities. We denote these
brace operations by —{{—, ..., —] in this memoir, and we assume that these operations
defined on the suspension ¥ L. As for the study of the monad I'(PreLie, —) in [Ces18|,
we prove that giving a ['(PreLies,, —)-algebra structure on L is equivalent to giving
weighted brace operations —{—, ..., =, .., on the suspension ¥ L which are similar
to the operations

.....

1
xﬂyla"'ayn]}ﬁ ,,,,, T —x{[ylw"7y17"'7yna"'7yn]}'
H Tl S—— S———

il
T1 Tn

We give an other characterization of such objects that will emphasize a notion of oo-

morphism. For any graded K-module V| we set

IPerm‘(V) = PV & (Ve

n>0

We prove that ['Perm®(V') is endowed with a coproduct Arpey, which, in some sense,
is compatible with the coproduct defined in [CLO1, §2.3] on Perm®(V'). We then define
the category 'APL,, formed by pairs (V, Q) where V is a graded K-module and @ a
coderivation on I'Perm®(V') of degree —1 such that Q* = 0. A morphism in TAPL,
also called an co-morphism, is a morphism of coalgebras which preserve the coderiva-
tions. We prove that L is a ['(PreLies,, —)-algebra if and only if XL € TAPL,,. We
also define a notion of (complete) filtered TAPL-algebra. The category of complete

I'APL.-algebras is denoted by FA/?TOO.

Given an object V € FA/P?OO, a Maurer-Cartan element is a degree 0 element
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x € V such that

d(x) + Zx{[a:]}n =0.

n>1

We denote by MC(V) the set formed by these objects. We prove that any co-morphism
¢V ~» W induces a map

MC(¢p) : MC(V) — MC(W)
so that MC : TA/PTOO — Set is a functor.

The motivation for using I'(PreLiey,, —)-algebras is given by the following theorem.

Theorem D. Let Brace be the operad which governs brace algebras (see [Cha02, Propo-
sition 2]). There ezists an operad morphism PreLlies, — Brace @ € which fits in a
H

commutative square
Prelie., — Brace ® £

l H
PrelLie —— Brace

As brace algebras are endowed with the structure of a I'(PreLie, —)-algebra (see [Ver23,
Theorem 2.15]), Theorem D implies that every Brace®&-algebra L is a I'(PreLies,, —)-
H

algebra, via the composite

[(PreLiey, L) — T'(Brace ® €,L) +—— S(Brace ® £, L) — L.
H H

Using that the normalized cochain complex N*(X) of a simplicial set X admits the
structure of an algebra over the Barratt-Eccles operad (see [BF04]) and Theorem D,
we define the simplicial Maurer-Cartan set associated to a complete brace algebra A
as

MC,(A) = MC(A® XN*(A®)).
In particular, the O-vertices are identified with Maurer-Cartan elements in A, when

using its underlying I'(PreLie, —)-algebra structure (see [Ver23, Theorem 2.15]). We
explicitly compute the connected components and the homotopy groups of MC,(A).

Theorem E. For every complete brace algebra A, the simplicial set MCq4(A) is a Kan

complezx. Moreover, we have the following computations for every T € MC(A).
— mo(MC4(A)) ~ meDeligne(A), where Deligne(A) denotes the Deligne groupoid as-
sociated to the I'(PreLie, —)-algebra A (see [Ver23, Proposition-Definition 2.30]);
— m(MC(A),7) ~{h €Ay | dh)=T+h(r) —T@(L+h)}/ ~, where ~. is the
equivalence relation such that h ~, h' if and only if there exists 1 € Ay such that

/ / /
h—h =d@)+ o)+ > 7(h,... b 1, 1),

p,g>0 P q

— mo(MCe(A), ) ~ (H1(A7),*,,0), where %, is the group structure on Hy(A") such
that

] *7 (1] = [+ "+ 7, 1]
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— Tpi1(MCe(A), 7) ~ H,(A") for every n > 3.

We have the following homotopy invariance result, which extends the Goldman-
Millson theorem in dimension 0.

Theorem F. Let © : A — B be a morphism of complete brace algebras such that ©
is a weak equivalence in dgMody. Then MCe(0O) : MCo(A) —> MCo(B) is a weak
equivalence.

We use this new deformation theory for the study of the homotopy of mapping
spaces in the category of non symmetric operads. For every non-symmetric coaug-
mented cooperad C such that C(0) = 0, and for every n > 0, we construct a twisting
derivation 9" on the operad F(C ® X' N,(A")) such that

B(C) @ A® := (F(C® L7 'N,(A®)),0°)
is a cosimplicial frame associated to B¢(C). This leads to the following theorem.

Theorem G. Let C be a coaugmented cooperad and P be an augmented operad such
that C(0) = P(0) = 0 and C(1) = P(1) = K. Then we have an isomorphism of
simplicial sets

Mapg, (B(C), P) ~ MCq(Homgeq, (C, P)).

The computation of the connected components and the homotopy groups of
Map, (B°(C), P) can then be achieved by using Theorem E.

In the symmetric context, the derivation 9" constructed above on F(CRX LN, (A"))
does not preserve the action of the symmetric group for every n > 2. We instead
consider a Y,-cofibrant replacement of B¢(C) given by the map B¢(C®Sury) — B¢(C),

H

where Sury is the surjection cooperad defined in [BCN23, Theorem A.1]. Using that
the action of X, on C(n)®@Surk(n) is free for every n > 1, we construct a twisting
derivation 9" on the operad F(C ® Surk ® X' N,(A™)) such that

H

B°(C ® Surk) @ A® := (F(C ® Surk @ L 'N,(A*)),0°)
H H
is a cosimplicial frame associated to B¢(C ® Surk). We deduce the following theorem.
H

Theorem H. Let C be a symmetric coaugmented cooperad and P be a symmetric aug-
mented operad such that C(0) = P(0) = 0 and C(1) = P(1) = K. Then YHomygeq, (C®
H

Surk ® N,(A®),P) is endowed with the structure of a Fmoo—algebm such that we
have an isomorphism of simplicial sets

Map%opo(Bc(C), P) ~ MC(XHomsseq, (C QI? Surk ® N.(A®),P)),

where Map¥,,0(B%(C), P) := Mapy,o,0 (B*(C %) Surk),P)
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Organization of the memoir

In the first part of this memoir, we recall notions that will be useful for explaining
our results. In §2.1.1, we explain our conventions on the context of differential graded
K-modules (dg K-modules) in which we carry out our constructions. We examine in
particular the definition of dg K-modules which are complete with respect to a filtration
and which we use in the definition of Maurer-Cartan elements. In §2.1.2, we review
our conventions on operads, and recall the precise definition of algebras with divided
powers over an operad. In §2.1.3, we recall the definition of the operad that governs
brace algebras and its expression in terms of K-modules of planar rooted trees. In
§2.1.4, we recall the definition of the Barratt-Eccles and the definition of the action of
this operad on the cochain algebra of simplicial sets through an intermediate operad
given by an operad of surjections.

In the second part, we study the structure of a I'(PreLie.,, —)-algebra. In §2.2.1,
we recall the construction of the operad PreLlie,, and a characterization of PreLie.-
algebras in terms of twisting coderivation on cofree Perm-coalgebras. In §2.2.2, we
explain the definition of the category TAPL,,. In §2.2.3, we explain the definition of
the weighted brace operations —{—, ..., —},, . and of the notion of a Maurer-Cartan

element in a complete I A/Pfoo—algebra. In §2.2.4, we explain the equivalence between
IAPL-algebras and I'(PreLies, —)-algebras (up to a shift).

The goal of part 3 is to define the morphism PreLie,, —> Brace ® £ and to prove

H
Theorem D. We actually obtain this morphism as a composite PreLie., Q Brace ®
H

B¢(A™'Brace") 2, Brace®€ where (2) is induced by a morphism B¢(A~'Brace’) —
H

£. In §2.3.1, we explain the construction of the latter morphism B¢(A~'Brace") — &.
Then, from the general bar duality theory of algebras over operads, every £-algebra A
comes with a twisting morphism on the free brace coalgebra Brace‘(¥A). In §2.3.2,
we make this twisting morphism explicit in the case A = N*(A") for every n > 0.
We will use this description to control the PreLie-algebra structure on A @ N*(A")
for every n > 0, when we study the simplicial Maurer-Cartan set associated to brace
algebras. In §2.3.3, we explain the definition of (1) to complete our construction of the
morphism PreLie,, —> Brace %} & and the proof of Theorem D.

In the fourth part, we define and study our notion of a simplicial Maurer-Cartan set
associated to a complete brace algebra. In §2.4.1, we define this simplicial set and prove
that it is a Kan complex. In §2.4.2, we prove Theorem E, which gives a computation
of the connected component and the homotopy groups of the simplicial Maurer-Cartan
set associated to a complete brace algebra. In §2.4.3, we give an interpretation of the
first differentials computed in §2.3.2 by computing the first simplices of the simplicial
Maurer-Cartan set associated to a chosed complete brace algebra defined in the con-
text of associated algebras up to homotopy. In §2.4.4, we prove Theorem F, which
is an extension of the classical Goldman-Millson theorem for Lie algebras. In §2.4.5,
we prove that, in characteristic 0, our simplicial Maurer-Cartan set is related to the
simplicial Maurer-Cartan set defined for Lie algebras via a zig-zag of weak-equivalences.
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In the fifth part, we show that we can describe a mapping space from the cobar con-
struction of a coaugmented non-symmetric cooperad to an augmented non-symmetric
operad as a simplicial Maurer-Cartan set associated to a complete brace algebra. In
§2.5.1, we recall the definition of the free operad generated by a sequence in terms
of planar rooted trees with inputs, and recall the model structure on the category of
operads. In §2.5.2, we construct a cosimplicial frame associated to the cobar construc-
tion of a coaugmented cooperad. In §2.5.3, we prove Theorem G, which shows that
we can describe a mapping space from the cobar construction of a coaugmented non-
symmetric cooperad C to an augmented non-symmetric operad P as as the simplicial
Maurer-Cartan set associated to the complete brace algebra Homgeq, (C,P).

In the last part of this memoir, we show that we can describe a mapping space
from the cobar construction of a coaugmented symmetric cooperad to an augmented
symmetric operad as a degree-wise Maurer-Cartan set of some FA/P?OO—algebras. In
§2.6.1, we recall the definition of the free operad generated by a symmetric sequence
in terms of planar rooted trees with inputs, and recall the model structure on the
category of symmetric connected operads. In §2.6.2, we construct a cosimplicial frame
associated to the cobar construction of a symmetric coaugmented cooperad. In §2.6.3,
we prove Theorem H, we show that we can describe a mapping space from the cobar
construction of a coaugmented cooperad C to an augmented operad P as a degree-wise
Maurer-Cartan set of some Fmoo—algebras.
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2.1 Conventions and notations

The goal of this section is to give recollections that will be needed in this memoir,
and to set on our notations and conventions.

In §2.1.1, we recall basic definitions on dg K-modules, and give the notation used in
this memoir. We also give our definitions and notation on the notion of a (complete)

filtered dg K-module, with underlying category dgl\f&iK.

In §2.1.2, we recall the notion of an operad and a cooperad. We also recall the oper-
ation of the Hadamard tensor product, which is widely used in this memoir. From the
definition, we recall the notion of (co)operadic suspension, and study the (co)algebras
over suspensions. We finally recall the notion of a I'(P, —)-algebra associated to an
operad P such that P(0) = 0.

In §2.1.3, we recall the definition of the operad Brace which governs brace algebras
in terms of planar rooted trees. We also set on our notations and conventions on planar
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rooted trees in this subsection.

In §2.1.4, we recall the definition of the Barratt-Eccles and surjection operads, fol-
lowing the conventions of [BF04]. We also recall an important example of an algebra
over such operads, given by the normalized cochain complex of simplicial sets.

In §2.1.5, we recall notions and notations on permutations and symmetric groups.
More precisely, we recall the notion of shuffle permutations which gives a set of repre-
sentatives of X, /%, X -+ X X, where r{ +--- + 1, = m.

2.1.1 The category dgModg

Let K be a field. In this memoir, we work in the category dgl\f&iK that we aim to
define in this subsection.

A graded K-module is a K-module V' equipped with a decomposition

v:@vn.

nez

Given such a decomposition, an element x € V is homogeneous if x € V,, for some
n € Z. The integer n is called the degree of x, and denoted by |z|. A morphism of
graded K-modules of degree d is a morphism f : V' — W of K-modules such that
f(Vn) C Wypq. We denote by Hom(V, W), the K-module formed by such morphisms.
We set
Hom(V, W) := @ Hom(V, W),.
dez

We denote by gMody the category formed by graded K-modules with as set of mor-
phisms from V' to W the K-module Hom(V, W),. The dual graded K-module of V,
denoted by V'V, is defined by Vv = Hom(V,K) where K is the graded K-module with
only one degree 0 component given by K. Explicitly, we have

VY~ @ VY.

nezZ
If V is finite dimensional, then, given a basis z1,...,x, of V, we endow V" with the
basis xy, ...,z where, for every 1 <i < n, the linear form z; € Hom(V,K) is defined
by
1 ifi=y
Vi) —
7 (%) { 0 else '

A differential on V is a degree —1 morphism dy : V — V such that dy o dy = 0.
We usually omit the index V' if there is no ambiguity on the ambient K-module. The
pair (V, dy) is called a differential graded K-module (or dg K-module). A morphism of dg
K-modules is a morphism of graded K-modules which commutes with the differentials.
If V and W are dg K-modules, then the graded K-module Hom(V, W) comes equipped
with a differential d = dyom(v,w) defined by

d(f) =dwo f— (-1 fody.
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We denote by dgMody the category formed by dg K-modules with as hom-sets the
previous dg K-module. This category is endowed with the structure of a symmetric
monoidal category: the tensor product V ®@ W of two elements V, W € dgMody is the
usual tensor product of K-modules, with as degree n component

VeW),= P V,eWw,

p+g=n
The differential on V' @ W is defined by
dvew (v @ w) = dy(v) @ w + (=1l @ dy (w).
The symmetry operator 7: V@ W — W ® V is defined by
v @w) = (=) @ v,

The tensor product f ® g of two morphisms of dg K-modules f : V' — V' and
g: W — W' is defined by

(f®g)(v@w) = (-1 f(v) ® g(w).
Note that, as in the non-graded setting, we have an isomorphism of dg K-modules
Hom(U ® V, W) — Hom (U, Hom(V, W))

for every dg K-modules U,V and W, defined by sending a morphism f: U®V — W
to the morphism which sends u € U to the morphism v € V +— f(u®@v) € W.

If V' is finite dimensional, we also have an isomorphism of dg K-modules
Hom(V,W) = W @ V.

This morphism is defined by sending f € Hom(V,W) to > 1, f(e;) ® e/, where
€1,...,€, is a chosen basis of V. Using the two above isomorphisms gives

VoW) ~WYeVY,
provided that V' is finite dimensional.

If we set V = A®" V' = C% and W = B®" W' = D® for some dg K-modules
A, B,C,D and n,k > 0, then f ® g is a morphism from A®" ® B®" to C%* @ D%k,
For our needs, it will sometimes be more convenient to see f ® g as a morphism from
(A® B)®" to (C @ D)*.

Definition 2.1.1. Let f : A®" — C®* and g : B®® — D®*. We denote by f®g :
(A® B)®" — (C @ D)®* the morphism defined by the following commutative diagram.:

A®n g gen 199, feg C®k g DEk

:T T:

(A® B)®" —— (C ® D)®*

f®g
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where we consider the isomorphisms given by the symmetry operator.
We now recall the definition of the suspension of dg K-modules.

Definition 2.1.2. Let k € Z and V € dgMody. We denote by XF the dg K-module
generated by one degree k element, also denoted by XF, with 0 as differential. We define

the k-suspension of V' as
SV =sFeV

For every v € V, we set ¥*v := ¥ @ v. We also set ©! = .

For every n, k > 0, we have an isomorphism of K-modules (3*V'),, ~ V,_;. Besides,
giving a degree & morphism V' — W is equivalent to giving a degree 0 morphism
V — YFW, and also equivalent to giving a degree 0 morphism X%V — W.

Note that, for every k € Z, the k-suspension defines an endofunctor in the category

dgMody: for every f € Hom(V, W), we define X* f € Hom(X*V, XkWW) by
(ZF ) (o) = (=1)"VISF £ (v)
for every v € V.

We now make explicit the notion of filtration that we consider in this memoir.

Definition 2.1.3. Let V € dgMody. A filtration on V is a sequence (F,V),>1 of sub
dg K-modules of V' such that

- CFRVCF,,,VC---CFHV=V.

A dg K-module endowed with a filtration is called a filtered dg K-module. A filtered dg
K-module V is said to be complete if we have an isomorphism

V ~ lim V/F,V.
—

For every filtered dg K-module V', the completion of V with respect to its filtration
is the filtered dg K-module defined by

~

V =limV/E,V,
—

with as filtration R
F,V =lmF,V/(F,V N E,V).
%
We immediately see that Vis complete.

Remark 2.1.4. IfV is complete with respect to the filtration (F,,V),>1, then ﬂnZI FV =
0. This implies that if x € V' 1is such that v € F},V =— x € Fy 1V for every k > 1,
then x = 0.

Let V,W € dgMody be two complete filtered dg K-modules. We say that a mor-
phism f :V — W preserves the filtrations if it satisfies, for all n > 1,

f(FV) C E,W.
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The complete filtered dg K-modules together with the filtration preserving morphisms
define a category denoted by dgModk. If V and W are filtered, then their tensor
product V ® W is also filtered with

F,(VeW)= > FEV®FW
ptg=n

However, this filtered dg K-module is not complete in general, even if V' and W are so.
We therefore define the complete tensor product by

VEWw =lim(V e W)/E,(V o W).
—

We can check that the category dgl\mK endowed with ® is a symmetric monoidal
category.

2.1.2 The notion of an operad and a cooperad

We briefly recall the notion of an operad and its dual notion, the notion of a coop-
erad. We will mostly follow [Frel7b] and [LV12].

Let Seqy be the category whose objects are sequences in dgMody. For every M, N €
Seqy, we denote by Hom (M, N) the sequence defined for every n > 0 by

Hom (M, N)(n) = Hom(M (n), N(n)).

Definition 2.1.5. A symmetric sequence is a sequence M € Seqx such that, for every
n > 0, the dg K-module M (n) comes equipped with an action of ¥, on it. A morphism
of symmetric sequences is a morphism of sequences which preserves the actions of the
symmetric groups.

We denote by ¥Seqy the subcategory of symmetric sequences. Note that if M, N €
YSeqy, then Hom(M, N) € ¥Seqx with the action defined by

(0 f)@)=0-flo™" )
for every n > 0, f € Hom(M (n), N(n)),z € M(n) and o € 3,.

Definition 2.1.6.

— An operad is a symmetric sequence P € XSeqx endowed with composition prod-
ucts

v:Pn)@Pr) @ - QP(r,) — P <Zh) ;

which satisfy associativity, unit and symmetry axioms. The underlying category
1s denoted by XOp.

— Dually, a cooperad is a symmetric sequence C € XSeqy endowed with composition
coproducts

(2

A:C (Zrz) —Cn)®C(r) ®@---®C(ry,),
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which satisfy coassociativity, counit and symmetry axioms. The underlying cate-
gory is denoted by XOp°.

By forgetting the action of the symmetric groups, and the symmetry axioms, we
have the notion of a non-symmetric (co)operad. We denote by Op and Op€ the under-
lying categories.

Remark 2.1.7. If P is an operad such that P(n) is finite dimensional for every n > 0
and P(0) = 0, then the symmetric sequence

15 endowed with the structure of a cooperad given by the dualization of the operadic
structure of P.

If P is an operad, then we define, for every n,m > 0 and 1 < i < n, the i-th partial

composition morphism by

0, :P(p)@P(q) —=— P(p)9K®---@P(Q)®@--- K —— P(p+q—1)

where we plug operadic units in places j # ¢. Dually, if C is a cooperad, we define the

1-th partial decomposition morphism by

Ai:Clp+qg—1) —25 Cp) 9K® - RC(q) @+ @K —= C(p) ® C(q)

where we plug cooperadic counits in places j # 7.

Example 2.1.8. For every n > 0, we set Com(n) = K endowed with the trivial ,,-
action. The isomorphism KQK ~ K endows Com with the structure of an operad called
the commutative operad.

Example 2.1.9. Let V € dgMody. We define the symmetric sequences Endy and
CoEndy by
Endy(n) = Hom(V®" V),
CoEndy(n) = Hom(V,V®").

These symmetric sequences are endowed with the structure of a symmetric operad de-
fined as follows. Let f € Endy(p),g € Endy(q) and 1 <i <p. We set

foig:fo(idv®---®g®---®idv).
Let ¢ € CoEndy (p),1 € CoEndy(q) and 1 <i <p. We set,

po = (—1)Midy @ - @Y & @idy) o ¢.
These operads are called respectively called the endomorphism and coendomorphism
operads generated by V.

Remark 2.1.10. Let n > 0 and P be an operad. The elements of P(n) are seen as
operations with abstract variables labeled by 1,... ,n. In this memoir, we often label
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these variables by elements of a finite set X with n elements. This can be formalized
as follows. Let X be a set with n elements, and 3(n, X) be the set of bijections from
[1,n] to X. We set

P(X) = (P(n) @ K[X(n, X)])s,,

where we make coincide the action of 3, on P(n) with its action by right translation on
Y(n, X). The group of permutations on X acts on P(X) by left translation on ¥ (n, X).
Note that, for every finite sets X,Y with n elements, every bijection u : X — Y in-
duces a morphism u, : P(X) — P(Y), so that P defines a functor from the category
of finite sets to the category of dg K-modules.

For our needs, we apply the above construction to totally ordered finite sets. In this
setting, we can shape operadic compositions on finite sets in the following way. Let
X=o < - <zpandyY =y < -+ <y, be two disjoint totally ordered sets. We
denote by x : [1,n] — X and y : [1,m] — Y the unique order preserving maps. Let
1<i<n. We set

XU Y=o < <21 <y < < Yp <Tigpq <+ < Ty
Let z : [1,n+m — 1] — X U; Y be the order preserving map. We define
0 :P(X)@P(Y) — P(XL;Y)
by the following commutative diagram:

P(n) @ P(m) —— P(n+m —1)

T« ®y*l: :lz*

P(X) @ P(Y) —— P(X 1;Y)

Definition 2.1.11. Let P be an operad. A P-algebra A (respectively P-coalgebra C') is
the data of a dg K-module A (resp. C') together with an operad morphism P — Endy4
(respectively P — CoEnd¢ ).

If A is a P-algebra with associated morphism ¢ : P — Endy, for every p € P(n),
we set p? := ¢(p) € Hom(A®" A).
Analogously, if C' is a P-coalgebra with associated morphism ¢ : P — CoEndy4, we
set p¢ := ¢(p) € Hom(C, C®™).

Remark 2.1.12. The above definition is such that the dual dg K-module CV of every
P-coalgebra C' is endowed with the structure of a P-algebra. We define an operad
morphism ¢V : P — Endev as follows. Let ¢ : P — CoEnd¢c be the coalgebra
structure given by P on C. For everyn >0, p € P(n) and uy,...,u, € CV, we set

¢ (p)(ur @ -+ @ up) = d(p)’ (u1 @ - ® ).

In the following, we also use the notion of a complete P-algebra. A filtered P-
algebra is a filtered dg K-module A endowed with the structure of a P-algebra such
that, for every n > 0 and p € P(n), the morphism p* : A®" — A preserves the
filtrations. A complete P-algebra is a filtered P-algebra which is complete with respect
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to its filtration.

We define a monoidal structure on XOp and X Op° given by the Hadamard tensor
product.

Definition 2.1.13. Let P, Q be two operads and C, D be two cooperads.
— The Hadamard tensor product of P and Q is the operad P ® Q defined by
H

(P % Q)(n) =P(n)® Q(n)

and equipped with the tensor-wise operadic composition product and the diagonal
action of 3,,.

— The Hadamard tensor product of C and D 1is the cooperad C % D defined by
(& % D)(n) = C(n) ® D(n)

and equipped with the tensor-wise cooperadic composition coproduct and the di-
agonal action of X,,.

We now define the notion of suspension in the category of operads and cooperads.

Definition 2.1.14. Let P be an operad and C be a cooperad. We set A¥ = Endyr and
A=Al

— The k operadic suspension of P is the operad A*P defined by
AP =A@ P.
H
— The k cooperadic suspension of C is the cooperad A*C defined by
AFC = (AF)Y <}§> C.
Accordingly, A*P(n) ~ SF1="P(n) and AFC(n) ~ SFI-C(n).

We have an isomorphism of operads A™*A¥P — P given by (X ~F1—)($k0-1)p))
n(n+1) k

—(=1)"z Fp for every p € P(n).

Note that, for every k € Z, the dg K-module X* is a A*-algebra. We thus have the
following.

Proposition 2.1.15. Let P be an operad and C be a cooperad. Let V' be a dg K-module.

— Giving a structure of P-algebra on 'V is equivalent to giving a structure of A*P-
algebra on LFV .

— Giving a structure of C-coalgebra on'V is equivalent to giving a structure of A*C-
coalgebra on XFV .
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Any operad P gives a monad S(P,—) : dgMody — dgMody called the Schur
functor and defined by

S(P.V) = Pn) s, Ve,

n>0

where we consider the action of 3, on P(n), and the action of ¥, on V®" by permu-
tation. The monadic structure is given by the composite

S(P.S(P.V)) === S(PoP,V) 22U 5P V),

where we denote by o the composition of symmetric sequences. Note that the algebras
over the monad S(P, —) are precisely the P-algebras.

If P(0) =0, we also have a monad I'(P, —) : dgMody — dgMody defined by

T(P,V) = Pn) ™ ver

n>1

We refer to [Fre00, §1.1.18] for the description of this monadic structure. We only note
that we have a morphism of monads

Tr:S(P,V) —T'(P,V)

given by the trace map. This is an isomorphism as soon as char(K) = 0. It is however
no longer an isomorphism in general when char(K) # 0.

Definition 2.1.16. Let P be an operad such that P(0) = 0. A P-algebra with divided
powers is a I'(P, —)-algebra.

Note that every P-algebra with divided powers is in particular a P-algebra through
the trace map.

Proposition 2.1.17. Let P be an operad such that P(0) =0 and V be a dg K-module.
Let k € Z. Then'V is a T'(P, —)-algebra if and only if S*V is a T(A*P, —)-algebra.

Proof. Let V be a T'(P, —)-algebra. We endow ¥*V with the structure of a T'(A*P, —)-
algebra via the composite

D(AFP, SFV) — SFD(P, V) — 2PV,

where the first morphism comes from the fact that Endgx(n) ® (32*)®" is isomorphic
to Y* endowed with the trivial ¥, action. The fact that this endows ¥V with a
[(A*P, —)-algebra structure is an immediate verification. O

2.1.3 On trees and the operad Brace

In this section, we recall the notion of a tree and define the operad Brace. The
notion of a brace algebra was introduced in [GV95, Definition 1], while an explicit
construction of their governing operad Brace is given in [Cha02, §2.1-2.2].
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Definition 2.1.18. We call (planar) n-tree any simply connected graph endowed with
a special vertex called the root and a labeling of its set of vertices from 1 to n. We put
the root at the bottom by convention:

We denote by PRT (n) the set of planar rooted trees with n vertices. For every
T € PRT (n), we set |T| =n and r(T) denotes the root of the tree T.

In some situation, it is more convenient to label an n-tree by a finite set with
n elements endowed with a total ordered relation. If X is such a set, we denote
by PRT(X) the set of n-trees labeled with elements of X. Note that since there
is a unique order preserving bijection [1,n] — X, there is a canonical bijection
PRT (n) — PRT(X). For instance, the tree 7" shown in the above definition can be

seen in PRT (a; < --- < ay) as
(=) () ()

Proposition 2.1.19 ([Cha02, Proposition 2]). Let Brace be the symmetric sequence
defined by Brace = K[PRT (n)]. Then Brace is endowed with the structure of an op-
erad. Its algebras are given by dg K-modules A endowed with morphisms —(—,..., —) :
A®mtl s A for any n > 0 such that x() = x and

$<y1, ce 7yn><217 ceey Zp> = Z j:x<Zl7y1<ZQ>v cee 7Z2n—17yn<22n>’ Z2n+1>
for every x,y1, ..., Yn, 21,...,Yp € A, where the sum runs over all consecutive subsets
such that Zl L. ZQn—i—l = (Zl, ey Zp).

Note that every tree T" with | 7| > 2 can be uniquely written as 7' = v(F, (), 11, ..., T»,))
where we denote by

the corolla with n leaves.

In the next sections, in order to have formulas which preserve the symmetric groups
actions on Brace, we pick an explicit set of representatives of Brace(n) as a free ¥,,-set.
We achieve this by setting a total order relation on the set of vertices V; which we call
the canonical order. For every a € N*, we set V@ = a, and define by induction,

V’Y(Fn(@,TL...,Tn)) =a<Vp <---<Vp,

for every tree T1,...,T,. For instance, if we set
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then Vp =5 <6 <3<7<1<4<2.

Definition 2.1.20. A tree T € PRT (a1 < --- < a,) is canonical (or in the canonical
order) if
Vir=a1 < <a,.

We let op € Xy to be the unique permutation such that 0;1 - T is in the canonical
order.

For instance, if we consider the above tree, then o = (5637142) and

G @
op' - T= QOO
@

is in the canonical order in PRT (1 < --- < 7).

Definition 2.1.21. Let X be a totally finite ordered set and T € PRT (X).

— A subtree S C T of T is an induced simply connected subgraph of T whose set
of vertices is seen as a subset Y of X endowed with the induced order relation.
Note that Vs C Vr as ordered sets.

— If S C T, we define the tree T/S € PRT (X \ Y U{S}) obtained from T by
contracting the tree S on the root of S, denoted by S in the labeling of T/S. The
totally ordered set X \' Y U{S} is obtained by changing r(S) into S, and removing
all the non-root vertices of S in X.

A subtree S C T is non-trivial if neither |S| # 1 nor |T'/S| # 1.

Remark 2.1.22. Let X be a totally finite ordered set. Let T € PRT(X) and S C T.
If T is canonical, then so are S and T/S.

Example: 1f

Y

OIONO),
T= QO
)
then

G (D
S= (5) ePRT(3<5<6<7)

is a subtree of T" such that

®
T/S=0)1H)ePRT(1<2<85<4).
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2.1.4 On the Barratt-Eccles and the surjection operads

We devote this subsection to recollections on the Barratt-Eccles operad and the
surjection operad. We will mostly follow conventions of [BF04].

Definition 2.1.23. We let £(r)4 to be the K-module spanned by (d + 1)-tuples
(wo, . .., wq) € (X,)4

with the identification (wy, ..., wq) = 0 if w; = w1 for some 1. We denote by E(r) the
dg K-module with £(r)q as degree d component. The differential on E(r) is defined by

d

d(wo, ..., wg) = Y _(=1)(wp, ..., i, ... wa).

=0

We also have an action of 3, on £(r) given by the diagonal action and the left
translation of X, on itself.

Proposition 2.1.24. The symmetric sequence £ is an operad called the Barratt-Eccles
operad.

We refer to [BF04, §1.1] for an explicit description of the composition product. We
have an operad morphism & — Com obtained by sending each degree 0 element to
1, and sending each non-degree 0 element to 0. This morphism is a weak equivalence
arity-wise.

Remark 2.1.25. The operad £ has the structure of a Hopf operad. Namely, we have
an operad morphism Ag : £€ — £ ® E defined by
H

d
AS(wOJ s 7wd> = Z(w()?' e 7wk> ® (wk7 SR 7wd>'
k=0

We now aim to define the surjection operad Y.
Definition 2.1.26. Letr,d > 0. A surjective map u : [1,r+d] — [1,7] is degenerate
if u(i) = u(i+1) for somei € [1,r+d—1]. We let x(r)q to be the K-module spanned
by non-degenerate surjective maps from [1,r + d]| to [1,r].

In practice, we represent a surjection u : [1,7+d] — [1, 7] by a sequence of values:

(u(1) - u(r+d)).

Definition 2.1.27. Let u € x(r)q. An integer k € [1,r +d] is called a caesura if u(k)
does not represent the last occurrence of its value in u.

We sometimes represent a surjection by its table arrangement, which is defined as
follows. Let u € x(r)s. We cut u at the caesuras, in the sense that we set

u = (ug(1)---uo(ro)) - -+ (ug(1) - - - ua(ra)),
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where ) . 7; = r+d, and where uo(r9), . .., uq—1(r4—1) represent caesuras of u. We then
write u as
up(1) -+ uo(ro)
u = : :
ug(l) - uq(rq)

We have an obvious action of 3, on x(r)4 given by the pre-composition.

Proposition 2.1.28 (see [BF04, §1.2]). The symmetric sequence x is endowed with
the structure of a symmetric operad and is called the surjection operad.

In fact, the surjection operad y is a quotient of the Barratt-Eccles operad £. The
quotient map is called the table reduction morphism.

Proposition 2.1.29. There exists an operad morphism TR : £ — x called the table
reduction morphism which is surjective arity-wise.

We refer to [BF04] for more details on the morphism T'R. We only recall its defi-
nition. Let w = (wp, ..., wq) € E(r)qs. We set

wy(1) -+ wy(ro — 1) wy(ro)

TRw)= >

ro+-+rq=r+d wél(l) cee wzi(rd - 1) wéi(rd)

where each row w(1) - - - w}(r;) represents the first r; integers occurring in the permu-
tation w; such that the values wi(1)---wi(r; — 1) do not occur in

wo(l) -+ wp(ro — 1)

wia(1) e wi (= 1)

An important example of y-algebra is given by the normalized cochain complex
associated to a simplicial set.

Definition 2.1.30. Let X be a simplicial set and, for every k > 0, let Cr(X) be
the K-module spanned by Xy. We define a differential on C,(X) by setting, for every
WS Xk,

i=0
where we denote by dy, ..., d, : X — Xp_1 the face maps. We then set

Nie(X) = Cu(X)/ (Z Sz‘Ck—l(X)> )

=0

where we denote by sq,...,Sg_9: Xg_1 —> X the degeneracy maps. The dg K-module
N, (X) is called the normalized chain complex of X. Its dual dg K-module, denoted by
N*(X), is called the normalized cochain complex of X.

Note that N, and N* are functors from sSet to dgMody.
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Theorem 2.1.31 ([BF04, §2]). Let X € sSet. Then N.(X) is a x-coalgebra, given by
the interval cut operations, which is natural in X. As a consequence, the dg K-module
N*(X) is endowed with the structure of a x-algebra.

We refer to [BF04, §2.2.1, §2.2.4] for an explicit description of the interval cut
operations. In particular, for every simplicial set X, the dg K-module N*(X) is endowed
with the structure of a £-algebra through the table reduction morphism TR : £ — .
In this memoir, we mostly consider the case X = A" for some n > 0. The elements of
Ny(A™) are linear combination of non-decreasing sequences ag < --- < a4 of integers
in [1,n], which we denote by ag - --ay. The normalized chain complex of A™ has the
following fundamental property.

Proposition 2.1.32. Let n > 0 and 0 < k < n. Then there exists a deformation
retract

" CN*(A”) —= N.(A9),

where i : N,(A%) — N,(A") is the morphism which sends 0 to k, and p,, : N,(A") —
N, (A) is the morphism which sends every vertex to 0.

The claim is that we have the identities

puit = idy,a0;

We set ¢* = i¥p,,. The homotopy h* can be explicitly defined as follows. Let ag - - - a, €
N,(A™) be a non-zero element. If this sequence contains k, then we set h%(ag - - - a,) = 0.
Otherwise we set

B(ag- - a,) = (~1)ag- k- -y,

where i is the unique possible position to insert k in ag---a, so that we have a non
decreasing sequence of integers.

By taking linear duals, we have a similar deformation retract on N*(A™). We will keep
the same notation h* : N*(A") — N*"}(A") and ¢F : N*(A") — N*(A") for the
linear duals of A* : N,(A") — N,;1(A") and ¢F : N,(A") — N,(A").

The dg K-module I = N*(A') can be used to model intervals. We indeed have a
decomposition of the diagonal map A : K — K2 as

A
—

K= N*(A% »—4— N*(A") wa N*(A% x N*(A% = K?
0,41
where sy = (p1)¥ and dy = (i9)¥, d; = (i})¥. We can lift such a diagram in the category
of P ® E-algebras for any operad P to get a construction of a path-object. Recall that
H

a path objet for a P ® £-algebra R is a P ® E-algebra R such that the diagonal map
H H
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A : R — R x R can be described as a composite

/\’A
R~ R! >)>R><R.

S0 (do,d1

Proposition 2.1.33 (see [BF04, §3.1.4, §3.1.9]). Let P be an operad, and R be a
P ® E-algebra. Then
H

R' = R® N*(A')
is a path objet in the category of P ® E-algebras. The P @ E-algebra structure on R is
H H

given by the composite

ngﬁ%ipggge——+mmmmm”,

where we use the P ®E-algebra structure on R, and the E-algebra structure on N*(A').
H

2.1.5 Appendix: basic results on permutations

In this appendix, we recall basic definitions and notations on permutations and the
symmetric groups. Our conventions will follow those given in [Frel7a, §1.1.7]. Let
n > 0. We denote by ¥, the symmetric group on the elements 1,...,n. For every
m,n > 0, we denote by [m, n] the set of integers k such that m < k < n. We denote
by id the relevant identity permutation, and we write any permutation o € ¥, as its
sequence of values (o(1)---o(n)).

For every p,g € Nand 0 € X,,7 € 3, we let 0 & 7 € X4, to be the permutation
defined, for every 1 <i < p+ q, by

N o(i) if1<i<p
(U@ﬂ@%_{7@+w ifp+1<i<p+q’

The operation @ is associative in | |, ., %,, so that we can generalize the definition of
@ to a direct sum of £ > 1 permutations o1 @ - - - @ 0.

Letry,...,r, > 0ando € X,,. Wesetr; =ri+--+r,_1+1 < --- <ri+--4r_1+7r;.
We define the block permutation induced by o of type (rq,...,r.) by

U*(Tl, . ,Tn) =T51) " To(n)-

Lemma 2.1.34 ([Frel7a, Proposition 1.1.8]). Let 0 € ¥, and 74 € ¥,), ..., T, € X, .
Then

(7-1 EB e @Tn) 'U*(Tl,.--7rn) e 0'*(7"1’...,7/'”) . (Ta'(l) EB PPN EBTO'(TL))

Let c € ¥, and 17y € X, ,...,7, € ¥, . We define the permutation o(m,...,7,) €

Erl+...+rn by
U(Tla'--aTn) - (7—1@"'@7—”)'0'*(7’1,...,7‘n).
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In operads theory, one needs a set of representatives of the quotient %, /%, X -+ x
3, for every ri,...,r, > 0such that ry +-- -+, = m. This leads us to the notion of
shuffle permutation. A (rq,...,r,)-shuffle permutation is a permutation in ¥, ...,
which preserves the order on each block ry,...,r,. We denote by Sh(ry,...,r,) the
set of such permutations.

A shuffle permutation w € Sh(ry,...,r,) is pointed if it satisfies w(l) < w(r; + 1) <
e <w(r 4 +rp_1+1). We denote by Shy(ry, ..., r,) the set of such permutations.

The following results allow us to write any permutations in terms of a product of a
shuffle permutation with a composite of a direct sum and a block permutation.

Proposition 2.1.35. Letn >0 and rq,...,r, > 0.
— FEvery o € X, 4...qr, admits a unique decomposition of the form
c=w-(M® 1)
where 7, € ¥, and w € Sh(ry,...,1,).
— Bvery o € Xy, 4..qr, admits a unique decomposition of the form
o=w-0o(T,...,T)

where 7, € X0 € Xy and w € Shy(r,...,70).

2.2 On PreLlies-algebras with divided powers

In this section, we study the structure of I'(PreLlies, —)-algebras. The operad
PreLlies, and its algebras have been explicitly described in [CLO1], using the compu-
tation of the Koszul dual operad of PreLie given in [Cha0l].

In §2.2.1, we recall this explicit construction of Prelie,,. We also focus on the
characterization of the structure of a PreLie,-algebra as an algebraic structure on the
suspension which we call a APL-algebra.

In §2.2.2, we define the notion of a 'APL-algebra which will be the analogue,
in the divided power framework, of a APL.-algebra, and we define a notion of oo-
morphism of 'AP L -algebras.

In §2.2.3, we define the symmetric weighted braces associated to a 'APL.-algebra
and the notion of a Maurer-Cartan element in the complete framework. We also prove
that giving the structure of a 'APL-algebra is equivalent to giving symmetric brace
operations.

In §2.2.4, we prove that giving a structure of a I'(PreLie.,, —)-algebra is equivalent
to giving a structure of a 'APL.-algebra on the suspension.
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2.2.1 Recollections on pre-Lie algebras up to homotopy

We begin this section by some recollections on the operad Perm, which was in-
troduced by Chapoton in [ChaOl]. Let Perm(n) = K". We denote by (e}')1<i<, the
canonical basis of Perm(n). The group ¥, acts on Perm(n) by

n__ n
0_'62- —60.71(0.

Proposition 2.2.1. The symmetric sequence Perm is an operad with as compositions

niteetng

ni enk
nit-tni—1+75i°

ef(efl, ... ejf)=e
Theorem 2.2.2 (see [Cha0l]). The operad PreLie is Koszul and its Koszul dual operad

. .
is Prelie = Perm.

This theorem implies that the operad PreLic,, = B°(A~'Perm”) gives a model
for PreLie-algebras up to homotopy. Such algebras have been described by Chapoton
and Livernet in [CLO1]. We recall this description in the following paragraphs. Let
V € gMody. We set

S(V):=EPren)s,,

n>0

where we consider the usual action of ¥, on V®" by permutation. Note that S(V') ~

Ko S(V) with
S(V) =Py,

n>1

Definition 2.2.3 (see [CLO01, §2.3]). The free Perm-coalgebra generated by V' is the
graded K-module Perm®(V) =V @ S(V') endowed with the following comultiplication:
AP(er111(U0 X 1) = 07

APerm(UO vy Un) = Z :l:(UO & Vo(1) " " Ua(k)) & (Ua(k—i—l) ® Vo(k42) """ UU(n))
0<k<n—1
o€Sh(k,1,n—k—1)
for every vy, ...,v, € V, where the sign in the sum is produced by permutations of the
factors.

The coproduct Apey, satisfies the following identities (see [CLO1, §2.3]):
(Zd & APerm)APerm = (APerm ® id)APerm;

(id ® Aperm)Aperm = (id @ 7)(id @ Aperm ) Aperm-

Remark 2.2.4. Let Aswyy : S(V) — S(V) @ S(V) be the coproduct defined by
AS(V)(I) =1®1 and

Asw) (01 v,) = Z Z :l:(vg(l) . .vg(k)) & (Ua(k+1) . .Ug(n))
k=0 o€ Sh(kn—k)
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for every vy, ..., v, € V. Then Apem S given by the composite

id®A s<v)

VeSV) —Y S(V)®S(V)

1dR1d®iy
(

VaSWV)eS(V)—= (VeasS(V) e (VeSV))

where iy : S(V) — V @ 8(V) is defined by

Ul"'Un'HE ZEUk@'Ul""&;""Un
k=1

for every vy,... v, € V.
Let my : Perm®(V) — V be the projection on the first factor.
Proposition 2.2.5 ([CLO1, §2.4]). The map

Coder(Perm®(V)) — Hom(Perm®(V), V)
d — 7TvOd

15 a bijection.

Proof. We only recall the construction of the inverse bijection W.
Let [ € Hom(Perm®(V),V). We define ¥(l) € Coder(Perm®(V)) as the sum of the
composite

’Ld®AS(V)

() VesSV) —SVesSV)esS(V) 24 v e SV)

and of the composite

Uo(l): VR S(V) 22 (Ve S(V)) @ (Ve S(V))

lid@l

VasSV)@V —— s Ve S(V)
where the last morphism is given by the projection from S(V) ® V' to S(V'). One can
check that we retrieve the definition given in the proof of [CLO1, §2.4]. O

Proposition 2.2.6 ([CL01, §2.5]). Let L € gMody. Giving a structure of pre-Lie alge-
bra up to homotopy on L is equivalent to giving a degree —1 morphism | € Hom(Perm®(XL), X L)
such that, for every x,yi,...,y, € XL, we have

Y. D>, HUT O Yoy Yo) D Yoh1) Yoim)

1=0 ceSh(i,n—1i)

+ Z Z (2 @ UYo(1) @ Yo(2) " Yo(it1)) * Yo(i42) " Yo(n)) = 0

=0 geSh(1,i,n—i—1)

where the signs + are produced by the permutations of the elements yi, ..., Yy.
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In particular, if L is a PreLie-algebra up to homotopy, then XL is endowed with a
differential d given by the restriction [ : XL — L.

In the following, we adopt the following notation:

x{lylv s 7yn]} = l(ZE Qyy-- yn>
We call such operations the symmetric braces associated to the PreLie,-algebra L.

Remark 2.2.7. We have an operad morphism PreLlic., — PreLie which sends e
to the pre-Lie product, and the other €}’s to 0. Thus, every PreLie-algebra has a
canonical PreLlies-algebra structure. Beware that the symmetric braces in pre-Lie
algebras have nothing to do with the symmetric braces in PreLies,-algebras.

Equivalently, Proposition 2.2.6 asserts that giving a structure of a PreLie.-algebra
on L is equivalent to giving a coderivation @ € Coder(Perm®(XL)) such that Q? = 0.

Definition 2.2.8. We define the category AP L., with as set of objects the pairs (V,Q),
where V € gMody and Q € Coder(Perm®(V)) is a degree —1 element such that Q* =
0. A morphism ¢ : (V,Q) — (V',Q') in APLy is a morphism of coalgebras ¢ :
Perm®(V') — Perm®(V") which preserves the coderivations @ and Q'.

Usually, a morphism in APL,, from (V,Q) to (V’',Q’) is denoted by ¢ : V ~» V'
and is called an co-morphism.

Theorem 2.2.9. A dg K-module L is a PreLies-algebra if and only if XL € APL.
Moreover, any morphism of PreLies-algebras ¢ : L — L' gives rise to a morphism
¢ XL — XL in NPL., which preserves the symmetric braces.

2.2.2 The category I'APL,

In this subsection, we aim to define an analogue of the category APL.,, denoted
by 'APL, which will characterize the I'(PreLies,, —)-algebras as in Theorem 2.2.9.

Let V' be a graded K-module. We define I'(V') by

L(V) = pver)™.

n>0

We have I'(V) ~ K@ T'(V) with

T(V) = e

n>1

Note that we have a morphism T'r : S(V) — I'(V) called the trace map and defined
by Tr(1) = 1 and

Tr(vi-vy) = Y Fp(1) @+ @ Ug(n)

for every vy,...,v, € V and n > 1.
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Definition 2.2.10. For every V € gMody, we set
[Perm(V) .=V @ I'(V).

Our goal is to construct a coproduct Arper, : 'Perm®(V) — T'Perm®(V) ®
['Perm®(V') which is compatible, in some sense, with the coproduct Apey, : Perm®(V) —
Perm®(V) ® Perm®(V'). For this purpose, we first consider the tensor algebra generated

by V:
(V) :=Pve

n>0

We have a coproduct Appyy : T'(V) — T(V)@T (V) defined by Appy(1) :=1®1 and

n

Aroy(v1 @ -+ @ vy) = Z(Ul R QU) R (Vpy1 ® -+ @ Uy).
k=0

for every vy, ...,v, € V. Consider

(V)= ve

n>1

We also have a coproduct on T'(V), defined, for every vy, ..., v, € V, by AT(V)<U1) =0
and,

3
—

A7) (1 @+ Qup) = ) (1@ @ Uk) @ (V1 @ - -+ @ Vn).
1

We embed V ® I'(V) € T(V). Note that

B
Il

Aziy(VeT(V)) cVal(V)oT(V).

By applying the embedding (V&")* C V @ (V"~1)*=1 for each n > 2, we have the
inclusion I'(V') ¢ V @ I'(V). We thus have obtained a coproduct

Arperm : I'Perm®(V) — I'Perm(V') ® I'Perm®(V).
We can also identify Arper, with the composite

1dRA
Arpem : V @ T(V) 228V @ (V) @ T(V)

l

VoI(V)RT(V) — (VeTI(V)e (Val(V))

Lemma 2.2.11. The morphism Arpem : ['Perm®(V) — I'Perm®(V) ® I'Perm®(V)
satisfies the identities:

(Zd ® AFPerm)AFPerm - (A 0% Zd) AI‘Perm;

(Zd X AI‘Perm)AFPerm - (Zd X T) (Zd X AI‘Perm)AFPerm-

Moreover, we have the following commutative diagram:
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Perm®(V) _Arerm Perm®(V) ® Perm®(V)
id®Trl l(id@TT)@(id@Tr)

'Perm®(V) —— I'Perm‘(V) ® I'Perm®(V)

Al"l:’erm

Proof. The proof of this lemma comes from straightforward computations. m

Remark 2.2.12. The relation (Zd X AFPerm)AFPerm = (Zd & T)(Zd & AFPerm)AFPerm
implies that, for every k > 1,

(Arperm)F(TPerm®(V)) € TPerm®(V) @ (I'Perm®(V)®*)>,

As a consequence, since (AT(V)>k reduces to the identity on VL and by definition
of Arperm, we have the following commutative diagram:

Ty Qk+1
T(V) > T(V)&k+ s Ve Ve

J J A

k ™
FPermc(V)(AL>”m) [Perm®(V) @ (TPerm®(V)®F) L — V @ (VEF)=k
Ty @k+1

where, for every k > 0, we denote by mwyer : T(V) — VE* the projection onto V.

Definition 2.2.13. An endomorphism d of I'Perm®(V') is called a coderivation if it
satisfies

AI‘Permd = (d ®id +1d ® d)AFPerm-
We let Coder(I'Perm®(V)) to be the K-module spanned by coderivations.

Our goal is to prove that any coderivation is characterized by its composite with
my. We rely on the following definition.

Definition 2.2.14. Let w,vy,...,v, € V. We define Sh:T(V)@V — T(V) by
=0

where the sign is given by the permutation v1®- - -V, QW +— TV R+ - RQUV; QW R V; 411 X
- @y, for every 0 < i < mn. We also define analogously Sh : V @ T(V) — T(V).

We immediately see that Sh(T'(V) @ V') C T'(V).
Proposition 2.2.15. The map

Coder(I'Perm®(V)) — Hom(I'Perm“(V'), V)
d — Ty od
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18 a bijection. We denote by U its inverse. If we consider the inverse ¥ given in the
proof of Proposition 2.2.5, then W is compatible with ¥ in the following sense. Let
[ € Hom(I'Perm®(V'), V). We define | € Hom(Perm®(V'), V') by the composite

WET PPerm®(V) —— V .

[: Perm®(V) —
Then the following diagram is commutative:

IPerm?(V) s TPermé(V)

id@TTT Tz’d@Tr .

Perm*(V) o Perm®(V)

Proof. Let [ : TPerm®(V) — V be a morphism. We define an endomorphism W(1) of
I'Perm®(V') by the sum of the composite

idRA T(V

(D) Veor() v o I(V) @ (V) 24 v o T(V)

and of the composite

U(1)y: Vol (V) —25 VaT(V)eI(V)
id®l

Ver(y) eV ey

'V erv)

Let x € Vand Y € I'(V). We write the coproduct Arperm (z®Y") by using the Sweedler
notation without the sum symbol, as

Arpam(z ®Y) = (2 ® Y1) @ (22) ® V2)),
where x5y € V and Y(y),Y(9) € I'(V)). Note that we have
(id @A) (@Y ) = (2@ Y1) ® (1) ®Y(g) + (z®@Y) ® 1.

Then, by definition of ¥, (1) and W,(1), we have

UVi()(zeY)=0(r2 Y1) (12 @Yy +l(zeY)®1
and o _
Uy(D)(z®@Y) = xz @ Sh(Y); l(z2) @ Yiz))),
so that

V() @Y)=1(z® YY) ® (10 @ Ye) +(z8Y)® 1+ 2@ Sh(Yayl(ze @ Ya)).

We set
Arperm(z ® Y1) = (2 @ Yn) @ (z1) ® Yag));
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Arperm(Z(2) ® Y(2)) = (2(2) @ Y21)) ® (2(22) @ Y(22))-
We then have

(U(0) @ id)Arpem(z @ Y) = 1z ® Y) @ (10) @ Yaz) ® (22) ® Yz))
iz ® Vi) © 18 (2 Vi)
+(z ® Sh(Ya); l(iv(l)@Y(m))))@( 2 @ Y2);

(
(id @ U(1)Arpem(z @ Y) = +(z®Yy) © (2@ @ V) @ ) (2(22) @ Y(22)))
+(z®Yy)) ® (JC ® Sh(Y(a1y; l(I(22) ® Y(22))))
+H(z® Yy ® l(f(z) ®Y) @ 1.

We now compute Apperm{i}(l\/) (x®Y). The term AFPerm{I\;l(l)(l’ ®Y) gives
Iz © YY) @ (2e) @ Yon) © (20 ® Yy) + 1z © Vi) © 1© (20) © Y)-
By using the first identity of Lemma 2.2.11 which gives
(z ® Yun) ® (za) @ Yag) @ (2 @ Yz)) = (2 ® Y1) ® (2(2) ® Y{a1)) ® (T(22) @ Y(29)),

we have that Appermill(B (x®Y) is

Iz ® Y1) @ (1) ® Yg) ® (22) @ Y(g)) Uz @ Y1) ® 1 ® (22) ® Y2)),

which is exactly the first two lines occurring in (¥(1) ® id)Arpem(z ® Y). The term
Arperm V2 (l)(z ®Y) gives

+(x @ Sh(Yon; (z0) @ Y))) @ (z0) ® Yaz)
+(r®Ya)) ® (T(x(Q) ® Yi2)) ® Yag)
+(r ® Yay) @ (x01) ® Sh(Y(lz);T(x(Q) ® Y)))
t(x ® Vi) ® (2 © Yig) © 1),
From the second formula given in Lemma 2.2.11, which gives
(2 ® Yan) @ (za) @ Yag) @ (72 @ Yz)) = (2 ® Y1) @ (22) @ Y(2)) @ (z1) @ Yau)),
we obtain that AppemPs(l)(z @ Y) is given by
(2 @ Sh(Yays iz ® Yz))) ® () ® V)
:I:(I X Y(n)) & (T(x(l) ® Y(12)) ® }/(2))
+(z ® Yu) ® (2(2) @ Sh(Yie); [(z(1) ® Yiuzy)))
+(z ® Y1) ® ((z2) ® Yiz)) ® 1).

The first line is the remaining term in (\TI(T) ® id) Arperm(z ® Y'), while the remaining
lines give (id ®\Il(l))Apperm(x®Y) when using again the first formula of Lemma 2.2.11.
We thus have proved that W () € Coder(I'Perm®(V)), and my o U(l) = I. We now prove
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that @(7) is the only coderivation () such that m, o Q = . We use Remark 2.2.12,
which gives

k+1
Rk+1 Ak ®i—1 ®k i+1 k
71—‘/'63”6'*162 - 7TV AFF’erng E : ® l Qm )AFPerm7

which proves that @ is fully determined by 1. We thus have Q= @(T), and then that
W is the desired bijection. We now prove the commutativity of the diagram. We note
that, by definition of ¥(l), U(l) and [, the following diagram is commutative:

0
/—\
I'Perm“(V'). o, IPerm* (V) I'(V) g ['Perm*(V)

(V)
id®TrT zd®Tr®TrT Tid@Tr .

id®As(v) I®id
Perm®(V) ———

Perm®(V) ® S(V) ——— Perm®(V)
w1 ()
By Lemma 2.2.11, and by the formula
Tr(vy v, -w) = Sh(Tr(vy---v,);w),
we also obtain the following commutative diagram:

Wa(l)

['Perm®(V) —— I'Perm®(V) @ I'Perm®(V) —— I'Perm“(V) @ V. —— yPermC(V)

Arperm id®l id®Sh(—
id®TrT id®Tr®id®TrT id®Tr®id Tid@Tr
Wy (1)
which proves the theorem. O

Definition 2.2.16. We define the category TAPL., with as objects the pairs (V, Q)
where V is a graded K-module and @Q a coderivation of degree —1 on I'Perm(V') such
that Q* = 0; a morphism ¢ : (V,Q) — (V',Q’) is a morphism of coalgebras ¢ :
I'Perm®(V') — I'Perm®(V’) which commutes with the coderivations Q and Q'

We usually denote a morphism ¢ : (V,Q) — (V',Q’) by ¢ : V ~~ V' when there is
no ambiguity on Q@ and )', and call it an co-morphism.

If ¢ : TPerm®(V) — I'Perm®(V’) is a morphism of graded K-modules, then we set,
for all k,n >0,

b V @ (V)= 5 TPerm®(V) —2— TPerm®(V");

@™ : TPerm®(V) — % I'Perm® (V) X5 el v g VEDRY
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Using these notations, a degree —1 coderivation @ on I'Perm®(V) is such that Q% = 0
if and only if for all n > 0,

>k =o.
k=0

In particular, Q) is a differential on V. From now on, we endow V € TAPL,, with the
structure of a dg K-module with differential d = QY. We also have that a morphism of
graded K-modules ¢ : 'Perm“(V) — I'Perm®(V’) is a morphism of coalgebras if and
only if

AFPerm¢n = Z (¢p ®¢Q)AFPerm-

p+q=n—1

Proposition 2.2.17. Every oo-morphism ¢ : V. — W in 'ANP L, is fully determined
by the composite ¢° = my o ¢.

Proof. Let ¢ be an oo-morphism. We have that

k k+1 Ak k 0\Qk A k
Qb = ﬂ-%/—i_ AFPerm¢ = (¢ )® A1"Perm?

which gives, for every v € I'Perm®(V),

P (v) = ¢ (v) © -+ ® ¢° (Vi)

where we use the Sweedler notation in the coalgebra I'Perm®(V). We then see that ¢
is fully determined by ¢°. O

Remark 2.2.18. This proposition implies that giving an oo-morphism ¢ @ V ~» W
is equivalent to giving a morphism ¢° : TPerm®(V) — W such that the morphism
¢ : I'Perm®(V') — T'Perm®(W) constructed in Proposition 2.2.17 satisfies

> (@Rl = R

k=0 k=0

for every n > 0. In particular, ¢§ : V. — W is a morphism of dg K-modules.
Definition 2.2.19. An co-morphism ¢ : V ~~» W is strict if ¢2 = 0 for all k > 1.

Equivalently, a strict morphism ¢ : V. — W is the data of a morphism of dg
K-modules ¢ : V' — W such that

(@)™ = 0@,

for every n > 0.

2.2.3 Symmetric weighted braces and Maurer-Cartan elements
in FA/PTOO

In this subsection, we define weighted brace operations for I'AP L -algebras, and
prove that giving a structure of a 'AP L -algebra is equivalent to giving such opera-
tions. These operations will be analogue to the operations given in [Ver23, Theorem
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2.6] for I'(PreLie, —)-algebras. We also define the notion of Maurer-Cartan element in
complete 'APL.-algebras.

We first need an explicit basis of ['Perm®(V’). We use the same arguments as in
[Ver23, §2.1.1]. Let B be a basis of V' composed of homogeneous elements. For every
n > 0, this gives a basis on V®" which we denote by B®". We consider the action of X,
on B®" by permutation of the factors without the Koszul sign rule. For every t € B®",
we denote by X the orbit of t under this action. We then have the unequivariant

identity @
V®n — K[Xt] .
teB®™ /3,

For every t € B®", we set K[X{J* = K[X|] with underlying action
o-x=¢(o,x)x

for every o € ¥, and = € X, where we denote by e(c, ) € K the Koszul sign which ap-
pears after the action of o on z. We then have the identification of Y,-representations:

ver= @ KXJE

teB®" /3,

Let (B®™)® be the subset of B®" given by elements t € B" such that there exists o €
Staby, (t) with e(o,t) # 1. We set (B®")" = B®™ \ (B¥")*. Note that, if char(K) = 2,
then (B®")" = B®" else, the subset (B®")" is given by tensors of the form z{" @ - -+ ®
9™ with xq, ..., x, € B pairwise distinct and 1, ..., 7, > 0 such that if z; has an odd
degree for some ¢, then r; = 1. We let S"(V') to be given by the projections of (B%")"
on S(V).

Proposition 2.2.20. The map O : §"(V) — I'(V) defined by
O(l‘l t xn) - Z j:xafl(l) Q& To—1(n)
o€Xy, /Stabs, (21®-®xn )
1S an isomorphism.
Proof. 1t is the same arguments as in [Ver23, Proposition 2.5]. [

In the following, in order to handle both the cases char(K) = 2 and char(K) # 2,
when taking elements with associated weights, we will tacitly suppose that if char(K) #
2, then all odd degree elements will have an associated weight equal to 1.

Lemma 2.2.21. Letx € V,y1,...,yp € B andry,...,r, > 0. Then
Arpem (@O(YF - yi™) =D Y (@O -y )@ (@O (" - yi ™)),
k=1 pi+qi=ri,i#k
Prtap=rr—1

where the sign is yielded by the shuffle

TRY R @Y = 22 YT R YT Ry RPN ® - @ yDIn,
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Proof. Straightforward computations. O
Theorem 2.2.22. Let V € TAPL,,. Then V comes equipped with operations, called
weighted braces, which have the following form.

- If char(K) = 2, then weighted braces are maps
A= =D VTV

defined for any collections of integers ry,...,r, > 0, which preserve the grading
in the sense that

Vk{IVk17 ctty Vk‘n ]}le--~7rn C Vk+klrl+"‘+knrn'

- If char(K) # 2, by setting V' = @,,c5 Von and Vo = @, 5 Vani1, weighted

brace are maps

== =B 2 VX (V)P (VU)X Y,
p q

defined for any collection of integers p,q,r1,...,rn > 0 which preserve the grad-
mg.

In addition, in both cases, the weighted brace operations satisfy the following for-
mulas:

(Z) a:{[ycr(l)a cee 7ya(n)]}r0(1),...,r0(n) = :t${[y1, cee 7yn]}T1,...,Tn7
(ZZ) x{[yla o Yi1, Y Yig, - - 7yTL]}7'17--~77‘z‘7170,7‘i+17~--,7‘n

= 'I{be e Yi1, Yir1, - - aynI}rl,...,ri,l,rprl,...,rn7
(m) ZE{[y1, s Al 7yn]}7“1,m,n,m$n = /\Tix{[yh e Yis e 7yn]}7“1,m,m7m$n7
(“)) x{[yla e Yis Yiy e 7yn]}r1 ..... T3, Tig 1T

T+ Vit
— ( 7 ‘T{Iy17 AR 7yi7 AR 7yTL]}7"1,.‘.,7‘1_1,'I‘i-‘rT‘i+1,’l‘i+2,...,T‘n7
7

T
(U) x{[yl; ey Y + @;’7 o 7yn]}r1,...,n,‘..,rn - Z x{[yl; ey Yis ?713 o 7yn]}rl,.‘.,s,ri—s,.‘.,'rn7
s=0

(/UZ) Z im{[yla s e 7yn]}p1,--~7pn{[y17 e 73-/711}(11,...,(1”

Pit+qi=Ti

+> > Felwln o valbewo v YD, = 0.

k=1 pi+q;=r;,i#k
Prt+qr=rr—1

In the converse direction, if a graded K-module V' admits such operations, then

VelAPL,.

In particular, the operation d(z) := z{[ is a differential. We usually endow
V e TAPL,, with the structure of a dg K-module with differential d.
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Proof. Let V€ TAPL.,. The strategy is the same as in [Ver23, Theorem 2.6] or [Ces18,
Proposition 5.10]. Let z,41,...,y, € V be homogeneous elements, and ey, ..., e, be
formal elements with the same degrees as y1,...,y,. We let F to be graded K-module
spanned by Yi,...,Y,. Let ¢ : I'(E) — I'(V') be the morphism which sends the Y;’s
to the y;’s. We immediately see that 1 is a morphism of coalgebras. We set

f{[yl, . ,yn]}r1 ..... = Q%ﬁm(x ® 77/10(Y1®T1 .. 'Yn®m))'

Formulas (i) — (v) are consequences of straightforward computations. We prove formula
(vi). Since 1) is a morphism of coalgebras, Lemma 2.2.21 gives

Q@ ypOY - Ym) = > +Q°x@ypO(Y' - Y) @ p(O(Y ---Y,))

Pitqi=ri

+Y 0 ) @ Sh(Q (g ® VO(YP - YIM))ipO(Yi - - Vi),

k=1 pi+qi=r;i#k
Prtqr=rr—1

For fixed p;’s and ¢;’s, we have

QO(QO(x®¢O(}qp1 T an))®¢0(yll11 e Yrgn)) - ${Iy17 s vyn]}m ----- Pn{[ylv s ’yn]}m ----- qn s

by definition of weighted brace operations. Concerning the second line, for fixed p;’s,
¢;’s and k, let Z be a formal element with the same degree as Q°(y, @O (YF*, ... YPn)).

We extend ¢ to ¢ : T'(E @ KZ) — T'(V) by sending Z to Q°(yp @ wO(YF, ... YPn)).
We then have

Sh(Q"(ye @ YO - Y1) s pO(Y" - Yi")) = vO(Z - Vi - V).

Taking the image under Q° thus gives

Q°(z @ Sh(Q°(yx @ YO(Y" - YI")); OV - - - Vi)
:m{[yk’{[yla--'?yn]}pl ..... pn7y17"'7yn]}l,q1 ..... qn*

Since Q°Q = 0, formula (vi) follows. We now prove the converse direction. Sup-
pose that V' is a dg K-module equipped with operations —{—,...,—[,, ., for all
r1,...,7, > 0 which satisfy the formulas given in the theorem. We pick a basis B of V
composed of homogeneous elements. Let x,y1,...,y, € B. For all r{,...,r, > 0, we
set

Q@O0 ) = Y- Yn i

where we consider the orbit map O associated to the basis B. By formulas (iii) —
(v) and the same computations as in [Cesl8, Lemma 5.15], this definition does not
depend on the choice of B. Let ) = \TI(QO) be the coderivation associated to Q° €
Hom(T'Perm®(V), V) given by Proposition 2.2.15. We need to prove that Q% = 0, which
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is equivalent to prove that Q°Q = 0. By Lemma 2.2.21, we have

Q@O -y = Y £Qz@ O ---yi) @ Oyl - yi)

Pitqi=ri

+Y ) 2z oSh(Q Uy @ O - yh)); Oy - yin)).

k=1 pi+qi=r;i#k
Prtqr=rr—1

Applying Q° to this identity gives Q°Q = 0. O

Remark 2.2.23. A strict morphism ¢ : V. — W preserves the braces in the sense
that

¢(x{[yl7"'7yn]}'l“1 ,,,,, "'n) :i¢<x>ﬂ¢<yl>77¢(yn)]}7‘l ~~~~~ Tn>

where + is produced by the commutation of ¢ with x and the yi"’s.

We aim to define the notion of a Maurer-Cartan element. To achieve this, we define
the notion of a complete 'APL.-algebra.

Definition 2.2.24. A filtered 'APL-algebra is a TAPL-algebra V' endowed with
a filtration (F,V )n>1 such that

FmV{IFva R Fpnv]}ﬁ ----- Tn - Fm+p1r1+~--+pnrnva

for allm,py,...,pn>1andr,...,r, > 0. An oco-morphism ¢ : V ~~ V' between two
filtered TAP L -algebras is an oo-morphism such that

O (Fp (VO™ N TPerm®(V)) C Fj(V').

for every k > 1, where we consider the filtration associated to a tensor product (see the
end of §2.1.1). A filtered ' AP L -algebra is complete if the map V' — lim,>, V/E,V

1S an tsomorphism.

We denote by FA/PTOO the category formed by complete filtered I'APL.-algebras
with as morphisms the oo-morphisms which preserve the filtrations.

Remark 2.2.25. If V is a filtered T AP L -algebra, then its completion V admits the
structure of a complete filtered T'ANP L -algebra.

Definition 2.2.26. Let V € FA/PTOO. A Maurer-Cartan element is an element x € Vj
such that

d(z) + Zx{[x]}n = 0.

n>1

We denote by MC(V') the set composed of Maurer-Cartan elements.

Proposition 2.2.27. Let V.V’ € I’A/PTOO and ¢ : V ~ V', Then ¢ induces a map

MC(3): MC(V) —s MC(V')
v Y Pz ®a®")

n>0
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such that MC(—) : I‘A/Pfoo — Set is a functor. Moreover, if ¢ is an isomorphism,
then MC(¢) is a bijection.

Proof. Let x € MC(V). We first prove that y = 3= &5 (z®"*) € MC(V'). We have
Z( ®m+1 Z Z ( Z 20 ($®p0+1) Q- ® ¢Om<x®pm+1)> '
m>0 m>0k>m po+--+pm=k—m

By using the proof of Proposition 2.2.17, we have

D@ = ZZ P ()

m>0 k>0 m=0

k
= DD onepEt

k>0 m=0

- #(Zew)

By using that Q = \TI(QO) (see the proof of Proposition 2.2.15), we obtain
Z Q ®k+1 Z (Z QO ®p+1 ) Q 2% + Zx ® Sh <I®p; Z Q2($®q+1)> =0
k>0 ¢>0 \p>0 p>0 q=>0

since z € MC(V). The map MC(¢) is thus well defined. Suppose now that ¢J is an
isomorphism, and let y € MC(V'). We search x € MC(V') such that

> @) =y,

n>0
which is equivalent to
e (v Tt
n>1
We set 2o = (¢9) " (y). We define a Cauchy sequence (zj); by induction by
T = < Z ¢0 ®n+1 )
n>1

We denote by x its limit. We show that x € MC(V'). For every W € TAPL.,, we set

w)+ > wlwh,

n>1

for every w € Wy. We apply R on the identity ano @ (z®"*1) = g, and use that
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y € MC(V'):

> (@) Zcbﬁ(x@”“)) =0.

p>0 n>0

This can be written as .

(Q)pdh(x¥") =0.

n>0 p=0

Using that ¢ is a morphism in FA/PEOO, we obtain that

D> @) =0

n>0 p=0

which gives

R(x) = —(¢)) " (Z > cngZ(rc@”“)) .

n>1 p=1

We use the computation of () as Q) = \II(QO):

R(z) = —(¢0)" (Z > @ @) @ e 4 o ® Sh(a® Qﬁp(af®”p“)))> :

n>1 p=1

We finally obtain

R(z) = —(¢p) " <Z $p(R(z) ® 2% + 2 ® Sh(z*" ™ R(I)))) :

p>1

From this identity, and because ¢ preserves the filtrations on V' and V', we have that
if R(z) € F},V for some k > 1, then R(x) € Fj41V. Since R(z) € F1V, it follows that
R(x) € >y FxV = 0 so that z € MC(V), and MC(¢)(z) = y by construction. The
map MC(¢) is then surjective. We now prove that it is injective. Suppose that there
exists 1,2 € MC(V) such that MC(¢)(z1) = MC(4)(x2). Then

T —xy = (¢) (Z(iﬂ?"*l - m?”“)) :

n>1

Suppose that x1 — x5 € F,V for some k > 1. Then there exists oy € FV such that
1 = x9+ . By definition of the filtration on tensor products, and because x5 € F}V,
for every n > 0, we have 27" = 25" +a/, where o}, € Fy,1V so that 25"t — 25" €
Fy1V. Since that ¢ preserves the filtrations, this implies x1 — x5 € Fj1V. We thus
have x1 = w9, so that MC(¢) is injective. O
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2.2.4 Pre-Lie algebras up to homotopy with divided powers
and 'APL

In this subsection, we show that giving a structure of a I'(PreLiey,, —)-algebra is
equivalent to giving the structure of a 'APL-algebra up to a shift.

Let L be a dg K-module. We make explicit a choice of a basis for I'(PreLie,, L)
so that we can apply [Ver23, Lemma 2.3]. Let B be a basis of L. As a basis for
B¢(A~'Perm")(n), we consider tree monomials in F(X"'A7'Perm")(n) with as vertices
elements of the form Ej_Qe{ where j > 2 and 1 < i < j (see [DK10, §3.1] for a
definition of these trees, or also Definition 2.6.4). We denote by T M (n) the set of tree
monomials with n inputs. This gives a basis of PreLie.(n) ® L®" which we denote
by TM(n) ® B®". We consider the action of ¥, on T.M(n) given by the action of
¥, on B¢(A"'Perm”) where we omit the Koszul sign rule obtained after using the
equivariance axioms for trees in B¢(A"'Perm") in order to obtain a tree monomial.
We also consider the action of ¥,, on B®™ by permutations. We deduce an action of 3,
on TM(n) @ B®" defined as the diagonal action which uses the two previous actions
of 3, on TM(n) and B¥". Given such an action, we can write

PreLies(n) @ L¥" = EB K[X{]
te(TM(n)@B®") /%,

where we denote by X the orbit of the element t € TM(n) ® B®™ under the above
action. Now, for every t € TM(n)®@B%", 0 € ¥, and = € X, we denote by (o, z) € K
the Koszul sign which appears after the action of ¢ on z, using the usual actions of X,
on TM(n) and B®". We define the ¥,-representation K[X{|* as K[X|] endowed with

the X,,-action given by
o1 =¢c(o,1)(0-x)F.

We obtain the following identification of YJ,-representations:

Prelies(n) @ LE" = @ K[X(E.
te(TM(n)@B®") /%,

Lemma 2.2.28. For everyn > 0, let (T M(n) @ B®")" be the subset of T M(n) @ B*"
formed by elements x such that, if o - x = x for some o € %, then e(o,x) = 1. Let
S"(PreLies, L) be the subspace of S(PreLies, L) given by these elements. Then we
have an isomorphism

O : 8" (PreLlies, L) — T'(PreLies, L).
Proof. This comes from the previous analysis and [Ver23, Lemma 2.3]. See also the

proof of [Ver23, Proposition 2.5]. ]

Lemma 2.2.29. Let L be a dg K-module. Denote by j1 : S(B*(Perm”), S(B¢(Perm"), L)) —
S(B¢(Perm”), L) and pi : T(B¢(Perm”),T'(B¢(Perm"”), L)) — T(B¢(Perm"), L) the
monadic compositions. Let x € L and By, ..., B, € 8" (B¢(Perm”), L) be basis ele-
ments. Then

(OS2, 0By, ..., 0B,)) = O(u(E "¢} (¢, By...., B,)).
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Proof. The proof is identical to the proofs given in [Cesl18, Theorem 1.5.1, Lemma
1.5.2]. 0

Theorem 2.2.30. A dg K-module (L,d) is a I'(PreLies,, —)-algebra if and only if
YL € TAPL,, with QY = Xd. Moreover, every morphism of T'(PreLicy,, —)-algebras
¢ L — L' gives rise to a strict morphism ¢ : XL — XL in TAPL.

Proof. Let L be a I'(PreLiey, —)-algebra. Then XL is a I'(APreLiey,, —)-algebra by
Proposition 2.1.17. Since APreLie., ~ B¢(Perm"), we have a morphism

[:T(S'"Perm’,XL) — L.
We then set, for homogeneous elements z,yy,...,y, € XL, and ry,...,7r, >0,

oy, Yalrsr, = UOE T @z @Y @ @ YT™)),

.....

where r = r{ + --- 4+ r, and where the considered orbit map is using a basis which
includes z,y1, . .., yn. We check all formulas given in Theorem 2.2.22. Formulas (i) —(v)
come from straightforward computations. We prove formula (vi). We compute

d<x{[y17 cee 7yn]}7"1 ..... rn> = ld<o<271671n+1 RXr yi@rl @ y;?m))

We have

O e eraym - oY) = >, o (ST eray" e ey,
c€Sh(1,71,...,rn)

Let O be the differential of B¢(Perm”). Then

d@{ys, - ynlrrm) =1 Yo o OEeTereyt @0y

c€Sh(1,r1,...,Tn)

We compute the first sum. Recall from the operadic composition in Perm (see Propo-
sition 2.2.1) and from the definition of the differential in the cobar construction of a
coaugmented cooperad that we have

p q

1 41y 1,1 ki
X "e™) = Z Z w- T, + E Z w-T70 |,
pt+q=r+2 \ weSh.(q,1,...,1) k=2 i=1 weSh.(1,...,q,...,1)
P,q>2 k
where we have set
koo k+qg-1
Tki — 1 k—1Y Yl k+q p+qg—1
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Let z1,..., 2001 =2, Y1, -, Y1y -+ s Yn, - - - , Yn. FOT given p, ¢ > 2 such that p+q =r—+2,
—— —
T1 Tn
we need to compute the sums,
Spai= D Y Fow (T @z @ ® Zuge);

oc€Sh(1,r1,....,rn) wESh«(q,1,...,1)

p q
Spa = Z Z Z tow - (Tyn @ 2u1) © -+ ® Zu(r41))-
k=2 i=1

=1 geSh(1,r1,...,rn) WESh(1,...,q,...,1)
k

We first compute 5’;7(1. We claim that

S = Z +O(TH @r @y @ @ y2r @y @ - @ yoP),
pit+qi=ri
q1+-+gn=q—1
Let 0 € Sh(ry,...,m,) and w € Shi(q,1,...,1). In particular we have w € Sh(1,q —
1,p —1) with w(1) = 1. Then there exist pi,...,Pn, q1,---,Gn With p; +¢; = ri,p1 +
~+p,=p—1land ¢ + - -+ ¢, = ¢ — 1 such that

Z) @ @ Zuri) = FT QYT @ - QYET QYT @ - @ yFr.

Thus, every term in the left hand-side sum is part of the sum in the right hand-side.
We now consider an element which occurs in the expansion of O(T) ® = ® yi'" ®

CRyPm ® yig)pl Q- ® y;?p") for some p;’s,q;’s as above. Let g € ¥,,1 be a blocks
permutatlon which sends 1@y ®- - - @yPr @yiP Q- - - @Y to £2 Ry ®- - - @yET.
Then

O(T11®I®y®q1® ®y§qn®y®p1® ®y®pn> — :tO(ﬁ T11®x®y?m® ®y®rn)

Let 7 € ¥,,1. We write 7 = on where o € Sh(1,71,...,7,) andn € ¥y x X, XX, .
Then

T Ty ®r@y" @ @y =0-f T, @z @y @ @y,"™).

We write 78 = wv where w € Sh(l,q —1,p—1) and v € ¥ x ¥,_; X ¥,_;. Since
nB(1) =1, we have w(1) = 1 so that w € Sh.(q,1,...,1). We finally have

T T @Ry @@y =0 (w- Tl Ty @ @ yS™)

so that every term in the right hand-side is part of S;q. We thus have proved the first
identity:.
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We now compute Siq. We claim that

2= Y O[T ey @yt @ @yl @y @ @ yi).
J=1 pitqi=rii#j
pjtqj=r;—1
p1+-+pn=p—1
qit-tgn=q—1

Since there exists v € ¥,,1 such that Tk i =y -T*! we can apply the same arguments

P’
as before to show that every term Wthh occurs in Sg o 1s part of the right-hand side
sum. Now consider some term T DT®Y;® P21 Q.. ® Y& @ PR ® y&Pr . Let

f € ¥,,1 be a blocks permutatlon Wthh sends z®y; ®yi®q1 ®- - @y ®y®p '®- - @yPPn
to xr @yP" ® -+ - @ y&. Then

O(T,, @x@y;@y; " @ - @y " @y @ - -@y"") = £O(B-Ty; @10y ®- - 9y,"™).

Now let 7 € ¥,.1. We write 7 = on where o € Sh(1,ry,...,r,) and n € X1 X ¥, X
- % %, . Then

T8 Ty r@y" @ ey =08 T ey @@y,

We finally write n = w-v,(1,7,1,...,1) wherev € ¥,,y € £,,w € Shy(1,...,q,...,1)
and k = v(2). Since nf(1) = 1, we have v(1) = 1. We thus obtain

T (B Ly eyt e ey =0 (W LTV erey" @@yl

so that every term in the right-hand side is part of Sg,q.

From Lemma 2.2.29, we deduce that formula (vi) of Theorem 2.2.22 is satisfied so that
YL € TAPL,. Suppose now that L is such that ¥L € TAPL,. We prove that L is
a ['(PreLies,, —)-algebra, or equivalently, that XL is a I'(B¢(Perm"), —)-algebra (see
Proposition 2.1.17). We first define

[ @ (E " Perm”(n) ® (SL)*")™ — LL

n>0

by setting, for every basis elements x,y1,...,y, € XL,

Z(O(Zilelzi re KT yi®1"1 - y®7‘n)> = :U{Iyla s 7yn]}r1 ..... Tn*

We then extend [ : T'(B¢(Perm”),XL) — XL by Lemma 2.2.29. By the same iden-
tities as before, we can show that [ preserves the differentials, giving a structure of a
['(APreLies, —)-algebra on XL. O

Remark 2.2.31. This theorem implies that the category of the T'(APreLlies, —)-
algebras is a full subcategory of TAPL.,. However, a morphism in TAPL., does not
necessarily preserves the monadic structure of I'(APreLies, —).

Corollary 2.2.32. For every complete I'(PreLie, —)-algebra L, the dg K-module 3L

1s endowed with the structure of a Iﬁp\ﬁoo—algebm such that MC(L) is in bijective
correspondence with MC(XL).
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H

Proof. The operad morphism Prelie,, — PreLie given in Remark 2.2.7 gives rise
to a monad morphism I'(Prelies,, —) — I'(PreLie,—). Then, every I'(PreLie, —)-
algebra L is endowed with the structure of a I'(PreLie.,, —)-algebra. By Theorem
2.2.30, the dg K-module XL is a TAPL-algebra. If we denote by —{—, ..., =}, ..
the weighted brace operations given by the I'(PreLie, —)-algebra structure on L, then,
by definition of the weighted brace operations given in the proof of Theorem 2.2.30,
we have

—3d(x) ifri+--+r=0

Ye{Zyr, o XYn ey, = (—1)'9”'21'{3/1}1 ifri=1r=...=7r,=0
0 ifT1+"'+’f’n22

for every z,y1,...,y, € L. Since the operations —{—,..., =},
tration on L, the operations —{—,..., =],

,,,,, ., preserve the fil-
. also preserve the filtration on XL so

.....

that XL € @w. Moreover, the previous computation of the braces shows that
r € MC(L) if and only if ¥z € MC(XL), which proves the corollary. O

Corollary 2.2.33. Suppose that char(K) = 0. Then every TAPL..-algebra V is en-
dowed with the structure of a APL-algebra such that

1

x{[yh""yn]}h ,,,,, rn 'xﬂylw'-ayl?'-'7yn7"'7yn]}
Hi Tie  N=——— ———
71 Tn
for every x € V and 1, ...,y, € V with associated weights r1,...,r, > 0, where we
consider the symmetric braces —{{—, ..., —| defined in Proposition 2.2.6.

Proof. Let V be a "'APL.-algebra. By Theorem 2.2.30, we have that X7V is a
['(PreLies,, —)-algebra. Since we have a morphism of monads given by the trace map

Tr:S(Prelies,—) — I'(PreLlies, —),

Y71V is endowed with a PreLies-algebra structure, so that V is a APL.-algebra. By
using the definition of weighted brace operations, we obtain the desired relation. [

2.3 A morphism from Prelie,, to Brace ® £
H

In this section, we construct an operad morphism from PreLlie, to Brace ® &£.
H

We will define this morphism as a composite of the form Prelie,, —> Brace ®
H

B¢(A'Brace") —s Brace @ €.
H

In §2.3.1, we construct an operad morphism B¢(A~'Brace¥) — £, which will be
given as a lift of some diagram.

In §2.3.2, we give a computation of the twisted coderivation on Brace®(X 1N, (A™))
induced by the morphism constructed in §2.3.1 and the &-coalgebra structure on
N, (A™) by induction on n > 0.
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In §2.3.3, we construct the morphism PreLie,, — Brace @ B¢(A~'Brace") and

H
deduce Theorem D.

2.3.1 A morphism from B°(A™1Brace") to &

Let Com be the commutative operad. Recall that if we consider the model structure
on the category of symmetric operads P such that P(0) = 0 (see [Hin03, §3.3]), then we

have an acyclic fibration & —» Com. We thus have there exists a lift of the following
diagram:

B¢(A~*Brace¥) —— Com

The goal of this subsection is to give an explicit choice of such a lift. Equivalently, we
are searching for elements pp € E(|T|)r|—2 for every T € PRT such that

d(Apr) + Z Aprys os Aps = 0.

ScT

For every o € %,, let hg : £(r)q — E(r)a41 be the morphism such that, for every
Wo, ..., Wq € Em
hZ(wo, ... ,w,) = (o,wp,...,w,).

We can check that this morphism is a homotopy between the identity map of £(r)4
and the morphism ¢% : E(r)qy — &(r)4 defined by

- o ifd=0
0z (W, ..., wg) = )

0 else

Accordingly,
dhg + hed = ide — 7.

By functoriality, we have that AhZ is a homotopy between the identity map and
Apg.

Construction 2.3.1. We set up =0, pue = (12) and ug = (21). For everyT € PRT,
we define pr by induction on |T| by

Apr = —ARZ" (Z Apirys os Aus> ,

ScT
where we take pris € E(Vrys) and pg € E(Vs) (see Remark 2.1.10).

Example 2.3.2. Let us make explicit the ur’s for T a tree with 3 vertices.

— IfT = %@, then we have two non trivial trees S; = % and Sy = , which

are such that T/S, = and TSy = . We thus have
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H

Z A,UT/S Og A,U,S = 2_1<513) 05, 2_1(12) + 2_1(522) 035,y 2_1(13)
ScT
= »1(123) — ©71(132).

We then deduce Aur = X71(123,132).

®
— If T = (2), then we have two non trivial trees S; = % and Sy = %, which are

such that T'/S, = and T/ Sy = % We thus have

> Aprysos Aps = T7(S13) 0, TTH(12) + E71(1S,) og, B71(23)

ScT

— $1(123) — £-1(123)
0.

We then deduce Aup = 0.
Theorem 2.3.3. For every tree T € PRT , we have
d(Apr) + Z Apzys os Aps =0
SCT

where we consider the elements pur’s defined in Construction 2.3.1. Then we have an
explicit lift

B¢(A'Brace”) —— Com
given by the morphism
B¢(A'Brace¥) — &
SIATITY — ur '

Proof. The theorem obviously holds if |T'| = 1,2, and also if |T'| = 3 by Example 2.3.2.
We now suppose that n := |T'| > 4. We use the identity dARZ" +AhI"d = idpg — A"

d(Apr) = Ahg"d (Z Apirys og A,US) +Apg" (Z Aprys os AMS) —Z AprysosAps.
ScT SCT scT

By an immediate induction, for every non trivial tree T', we have that Aur € AE(n)_4,
or equivalently pip € £(n),—2. This then gives |uz/g os ug| = n —3 > 0. Thus, by
definition of pZ", we have that

Apg” (Z Apirys os AMS) = 0.

ScT

We now prove that

d (Z A,uT/g Og Aﬂg) = 0.

ScT
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We compute:

d (Z AMT/S Og A,ug> = Z d(A[I,T/S) Og A[,[,S — Z AMT/S Og d(A,uS),

SCT ScT ScT

because the differential of the Barratt-Eccles operad is compatible with its operad
structure. Now, because pug = 0 if S has only one vertex, we can consider subtrees of
T with at most n — 1 vertices. We can then use the induction hypothesis.

d (Z Apr/s og A,us> = — Z Z (Apyrysy v ou Apw) os Aps

ScT ScTucT/S

+ Z Z Aprss os (Apsyu ov M)
ScTUcs

We have two types of subtrees U of T/S: either U does not contain the vertex S, so
that U can be canonicaly seen as a subtree of T such that V;; N Vg = (), or U contains
the vertex .S, so that U can be seen as a subtree of T" such that S C U. We thus have

d (Z Apirys og Au5> =— Z Z (Apryu ouys Apuys) os Aps

ScT ScT sScucT

— Z (Apurysy v ou Apw) os Aps
S.UcT
VsNVy=0

T Z Z AMT/S O3 (AMS/U oy Auy).

ScTucsS

In the second line, by exchanging the roles of S and U, we have a sum of terms of the
form

(Apqrysyv ov Apwr) os Apis + (Apurjuys os Aps) ou Apw

which is 0, because of the operadic axioms and because |Auy| = |[Apus| = —1. We thus
obtain

d (Z Apirys os Aus> = =2 > Ny ougs Awys) os Apis

ScT ucTr scu

+ Z Z Apirys os (Apusyvy ou Apy)
SCTUCS

= - Z Z(AMT/S osyu Apusyvy) ou Ay

Scrucs

+ Z Z Aprys os (Apgsvy ou Apw)

Scrucs
= 0,

using again the associativity of the operadic composition. O
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2.3.2 On the twisted coderivation of Brace®(XN*(A"))

Every E-algebra E inherits a B¢(A~!Brace")-algebra structure induced by the mor-
phism B¢(A~'Brace") — &£ given by Theorem 2.3.3. This algebraic structure is equiv-
alent to giving a twisted coderivation on the free brace coalgebra Brace®(XE) generated

by X E. Recall that

Brace®( @ @ (BE)®k)=

k>1 TePRT (k)

where we equalize the action of X, on TV with the action of ¥, by permutation on
(LE)®k. In the following, we identify the k = 1 component with L F.

If F is finite dimensional, giving such a coderivation is equivalent to giving a twisting
morphism 9 on the free complete brace algebra

Brace(z'EY) =[] @ SLEY)ER)y

k>1TePRT (k

This completion is obtained from the free brace algebra Brace(X~'EY) endowed with
the filtration

F,Brace(S'EY) = @ @ STEY)®R)y,

k>p+1TePRT (k

One can check that the brace algebra structure of Brace(X 'EY) preserves this filtra-

tion so that the completion B/fr\ace(E_lEv) is endowed with a brace algebra structure.
The derivation 9 is thus given by a generating function

oF = Z T @ A’
where p£" : BV — (EY)®7l is the map induced by pr € E(|T]) given by the &-
algebra structure of E. Note also that the definition of ¥ is natural with respect to
E. Namely, if F'is an other finite dimensional £-algebra and f : FF — F a morphism
of £-algebras, then we have a commutative diagram

race v
Brace(S1EY) w Brace(X71FY)

8El laF

The goal of this subsection is to give a computation of the differentials 9" := 9N (A"
by induction on n > 0. To achieve this, we use Construction 2.3.1 which defines the
Apr’s, and analyze the coaction of TR(Auz) on X710---n € XN, (A"), where TR
is the table reduction morphism (see Proposition 2.1.29).
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Let r,d > 0 and 1 < k < r. We denote by

ke X(1)a — x([k,7])a

the morphism obtained by forgetting 1,...,k — 1. If the degree does not match, we
send the surjection on 0. Note that m; = ud.

Lemma 2.3.4. Let w € £(r)y. Then

<

TR(hg(w)) = ) 1k m(TR(w)),

k=1

where we consider the concatenation of a surjection in x (k) with a surjection of x([k,r]),
giving a surjection in x(r).

Proof. Let w = (wy, ..., wq) € E(r)q. On one hand, we have

1
Wy

. r o(1) - w((ro
rROE@) =Y, Y | M

k=1 ro+---4rq=r+d—k+1

T wa) gl
where each wy (1), ..., w(rg) are obtained from wy(1), ..., wg(r) by taking the first ry
terms which are not among
1 . E—1
w(1) - wplro—1)
wpa (1) - gy (rer = 1)
On the other hand, if we write
wi(l) ..o wy(rg)
TRw)= Y. :
’“6+'1"S+T:&S=T"+d wi(1) .o wi(r])
where each w} (1),...,w](r},) are obtained from wy(1), ..., wg(r) by taking the first 7},
terms which are not among
wp(1) - wp(g—1)
wy_y(1) wy_y(re—y — 1)
then
wp(1) wy(ro)
(T R(w)) = >, : :
where, as above, each wy(1),...,w,(r) are obtained from wy(1),...,w(r) by taking

the first r; terms which are not among
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1 e E—1
wo(l) -+ wp(ro—1)
Wi (1) wg (e — 1)

We then deduce

Zl k- 7o(TR(w ZT: Z wé):(l) w()(j’O)

EITHEETT vy - wir)

which proves the lemma. [
Lemma 2.3.5. Let X be a totally ordered finite set and T € PRT (X) with |T| > 3.
We let by to be the number of vertices in the first branch of T' (without the root).
— If by > 2, then TR(ur) = 0.
— If by = 1, then, if we denote by r the root of T and s the second element of Vr,
then there ezists up € x(X \ {r}) such that TR(ur) =rs - ur.

Proof. 1t is sufficient to prove the lemma for a canonical tree T' € x(1 < --- < |T).
We prove the lemma by induction on |T|. If |T'| = 3, then Example 2.3.2 implies that
that the assertion of the lemma is true. We now suppose that |7'| > 4. Suppose first
that by > 2. By Lemma 2.3.4,

7
=Y £l k- m(TR(urys) os TR(us)).

k=2 SCT

Note that the sum begins at k£ = 2, since that, by an immediate induction, the elements
TR(ur)’s begins at 1. Let S C T. Our goal is to prove that, for every 2 < k < |7,

1---k- Wk(TR(ILLT/S) Og TR(ILLS)) =0

We distinguish several cases. If either bg > 2 or by/g > 2, then the identity holds by
induction hypothesis. Suppose now that bg = br;s = 1. Since by > 2, we have these
different cases.

— If r(S) is one of the vertex of the first branch of 7', then, because br/s = 1,
the tree S is the full first branch of 7. In this situation, the first permutation
occurring in pip/g og jig is the identity permutation, so that taking the image of
this element under A gives 0.

— If r(S) = 1, since bg = br/s = 1, we have by = 2, and the second vertex of S is
2. Then, by induction hypothesis,

TR(ps) =12 - ug;

TR(pur/s) = S3 - urys,
where ug € x(Vs \ {1}) and ur/s € x(Vr/s \ {S}). We thus have

TR(pr/s) os TR(pus) =12 - ug - 3 - ugys.



92

CHAPTER 2. Pre-Lie algebras up to homotopy (... )

Since 2 occurs in the surjection ug, taking the image of such an element under
7 will gives 0 for every k > 3. If k£ = 2, then the corresponding term is

1271-2(12us3uT/S):122u53uT/5:O

— If 7(S) is neither 1 nor an element of the first branch of 7', then we cannot have

br/s = 1, since we have supposed by > 2.

This concludes the case by > 2. We now suppose that by = 1. We use again the
identity up to signs

7|

TR(ur) = — Z Z +1--- k- mp(TR(prss) os TR(ps)),

k=2 SCT

given by Lemma 2.3.4. Our goal is to prove that the terms of this sum with k£ > 3 are
0. Let S C T be such that bg = by/s = 1. We have three cases.

— If |S],|T/S| # 2, then, since by = 1, we cannot have r(S) = 2 so that 2 is the

second occurrence of either the surjection T'R(ug) or the surjection T'R(pr/s).
By induction hypothesis, in any case, taking the image of m; for every k > 3 of
the corresponding element gives 0.

Suppose now that [S| = 2 and |T/S| # 2. If S does not contain 2, then the
above argument gives a resulting element equal to 0 in the sum, for &£ > 3.
Else, we have r(S) = 1 so that TR(us) = 12. We thus have, by induction
hypothesis, that T'R(jr/s) os TR(js) is of the form 123 - up/s where up/g = 0 or
urss € X(Vrys \ {S}). The image of this element under 7, is 0 for every k > 4.
If k = 3, then we have 123 - 73(123 - ur/g) = 1233 - m3(ugys) = 0.

Suppose now that |T'/S| = 2 and |S| # 2. Because by = 1, we have r(S) = 1. We
then obtain that T R(pr/s) = Sa for some 1 < o < |T'|. Therefore, by induction
hypothesis, the composite T'R(pir/s) os TR(jis) is given by 1¥ - ug - o, where ¥ is
the second vertex of S. If a # 2, then ¥ = 2 and ug contains an occurrence of 2.
Taking the image of such element under 7, for every k£ > 3 gives 0. If a = 2, then
> = 3. The image under 7, of the resulting composite gives 0 for every k£ > 4. If
k = 3, then the resulting term in the sum is 123-75(13-ug-2) = 1233-m3(ug) = 0.

The lemma is proved. O

This lemma allows us to compute 9°.

Lemma 2.3.6. We have the following identity:

¥10
rx)= 1 .
¥10

Proof. For every canonical n-tree T with n > 3, we have that Aup(X7'0) = 0. Indeed,
by Lemma 2.3.5, in this case, the number 2 occurs at least two times in the surjection
TR(ur), so that its coevaluation on 0 gives 0 by definition of the interval cuts oper-

ations. There only remains the case n = 2. The associated canonical tree is T' = %,
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which gives TR(ur) = (12) by definition. By definition of the interval cuts operations,
the coevaluation of the surjection (12) on 0 is 0 ® 0, which gives the result. O

For every n, k > 0, let 8&) be the composite of 9™ with the projection on trees with
k + 1 vertices. Our goal is to compute 8&) by induction on n, k > 0. Recall, from after
Proposition 2.1.32, the two morphisms ¢? : N,(A") — N,(A") and A : N,(A") —
N.11(A™), which satisfy
dhy + hyd = idy, an) — @y
We keep the notations ¢ and hY for the two induced morphisms on Y 7'N,(A"),
which also satisfy the same homotopy relation. We extend such morphisms on the
tensor algebra of X1 N, (A") by

() (@1 @+ ®@xy) = op (1) @ -+ @ ) (1)

p
(A1 @ @) =Y+ (11) @ -+ @ P(Ti1) @ (1) @ Tij1 @ -+ @y,
=1

for every z1,...,x, € XN, (A"). We extend ¢ and h2 on Brace(S~'N.(A™)) by
setting, for every canonical tree 7 and X € (37N, (A"))®/T

T ®X)=T® e (X);

HAT®X)=T®h(X).

These definitions are extended to any tree T by symmetry. We then obtain the homo-
topy relation:

n 0 0qn __ 0
Theorem 2.3.7. Let n,k > 1. Then

Oy (S7'0om) = —HY | Y 0300 (E7'0---n)

p+q=Fk
p7#0

In particular, we have the induction relation:

Oy (8710 m) = HOAOO; M (2720 (n— 1) — HO | S 010, (8710 n)

n
pHq=k
p,q7#0

Starting from Lemma 2.3.6, this theorem allows us to compute the elements 8&) (X710---n)
by induction on n,k > 0.



94 CHAPTER 2. Pre-Lie algebras up to homotopy (... )

Proof. We have

a(110)8(72)(2710''_"fl) = — Z 8&)8@)(2710“_'71)-
p+q=k
p#0

Applying H? on this equality gives

Oy (S7'0om) = —H) | Y 0300 (E7'0---n)

n
pHq=k
p#0

+ 00 | Y 00k, (87100 n) | — O HOOpG, (S0 )
p+q=k
p#0
The second term on the right hand-side vanishes, since the differentials 0" are com-
patible with the simplicial structure of %(E‘U\Q(A')) defined tensor-wise and
P0(X710---n) =0 since n > 1. We now deal with the last term. Let 7" be a canonical
tree with || = k+1 and by = 1. By Lemma 2.3.5, there exists ur € x([2, k4 1]) such
that

Then, up to a sign, the elements occurring in each terms of TR(ur)(0---n) are on the
form
0-- k®r®X,

where z € N,(A") has a length which is at least 2, and X is a tensor product of
elements in N,(A™). The image of such elements by h2 is 0. We thus deduce that
H0jj,y (3710 --n) = 0, which proves the first formula.

We now prove the induction relation. For every n,k > 1, we have

n —1 _ 0qn n —1 0 ') ') —1

ptq=k
p,q7#0

We only need to compute the first term. We have

Oy Oty (5710 m) = = (=1)'d'0 (5710 - (n — 1)),
i=0
For every 1 < i < n we have HYd* = d'H? |. From the first formula that we have
proved, we deduce that the element 8851(2*10 -+-(n—1)) is in the image of H?_,.
Since H? H? | = 0, we obtain at the end

Hp 000y (5710 n) = Hpd 9 (2710 - (n — 1)),
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which proves the theorem. 0

Corollary 2.3.8. Let n > 0. Then

o= ) =S

Proof. We prove the corollary by induction on n > 0. Lemma 2.3.6 proves the case
n = 0. We now suppose that n > 1. Theorem 2.3.7 gives

Oy (X710 m) = Hyd*d (2710 (n — 1)).

By induction hypothesis on n, we have

n Ylkeon
O (ET0- - (n=1) = =) (1) |
k=1 DOt I 5
This gives
n Ylk-on Y10
Oy (2710 n) =) (=1)F | + L
k=1 Y10k ¥710
which gives the result. O]

We can also compute the differentials 9!, 9% and 9. In the following corollary, we
set
Sy kXl
STer Ty ="z + Sy + Z N2
k>1 Yl

for every degree 1 elements z,y € N,(A"). Note that the operation @ corresponds to

the circular product © defined in [Ver23, Remark 2.20] in the brace algebra lS’/rcEe(E*lN* (A™)).
In particular, the product © is associative. This operation is reviewed in details in
the beginning of §2.4.2. In order to write shorter formulas, we also put a weight
on the arrows of our trees. We precisely set, for every z € N,(A"), for every tree

Ty,...,T € l?\ace(Z_lN*(A”)) and for every integers ry,... 71, > 1,
o Ty T Ty e Ty TR Ty
@ & = T~ N J_—
Yl Yl

If r; = 1 for some 7, we remove the weight from the arrow.

In the following corollary, we drop the desuspension ¥~! on basis elements of
YTINL(AM).
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Corollary 2.3.9. We have the following formulas in E\ace(z_l]\f*(A”)):

1 01
¢ DO =0-1— | +)> &;
0L  #>1 0
2 12 02 012 01@12
o P(012)=02-01—12+ | —> & + | :
012  k>1 01  45>0 \®\Q/@/
3
e 9°(0123) =023 — 1234013 — 012 — |
123
23 13 123 12023
+ ® — o |
k>1 012 ij5>0 ﬂ/@/
03 023 0223 012 © (1 +23) 01©12@23
s \ég%@/
13 123 12023
" Z 03 013 01@13 01 01012023
i.5,ke,lm>0 \@x#%@/
0
03 013 01®13 123 01012023
4,5,k>0 Q
03 0123 01012023
+2 \®\0/@/
1,720 Y

Proof. We first compute 0. Lemma 2.3.6 and Corollary 2.3.8 give

0'(0)= | ; 9'(1) =

) 661)(@) =

o — 1o
= — |

We compute 8(1k) (01) by induction on k& > 1. We give the details for the case k = 2.
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By Theorem 2.3.7, we have
a(12) (ﬂ) = _H?a(lma(lo) (ﬂ) - H?8(11)8(11)(ﬂ)-
Because the differentials 0"’s preserve the face maps, we have

02)00)(01) = d’f)(0) — d' 9y (0)

Pt 0’

since 9y = 0. Now, by the Leibniz rule in Brace(3~' N, (A1),

01 D (01) 1 Oty (1)
(2)\2 2+
@) = 1 = = =
94y(0) 0 O (01) 01
These terms give
01
|
01 U o 0L 01 0
| = L+ N+ NS
911)(0) 0 0 0
01 1
| |
O (01) 0 u
_ | — + :
0 0 0
1 1
| |
1 ! 01 | 01 1
S N N EEN
a(12)(_1) 0 01 0 0
1 1 1 1
+ N - N S
01 01
1
|
M 0
\1 oL

The boxed tree is the only tree which gives a non-zero element when applying HY. This
gives
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We now suppose that £ > 3. By definition, and since 8(1,671)6(10) (01) = 0 because
8&—1) =0, we have

Oy (01) = —HY 8y, _1)0(1)(01) — HY},yy,_1y(01) — Z HYd(,0,,(01).

ptq=k
p,q70,1

By induction hypothesis, for every p,q # 0, 1 such that p+ ¢ = k, the term a(lp)a(lq) (01)
will only give trees with as vertices 0 or 01, so that H{9/,d(,(01) = 0. We now look
at the remaining terms. Since k£ — 1 > 2, we have by induction hypothesis and by the
Leibniz rule

01
1 1 @
91y Ok—1)(01) = Z 0L 0 01
protr=k-1 @ | o
0
01 1
@ |
+ 0L 0 01 — 01 01 01,
ptg=k—1 \@\ | /®/ prq=k—1 \@\ | /@/
0 0
which gives 70/} 9, _,,(01) = 0. We finally have
oL 1
) | 0L 1 01
1 1
Ap-19)(01) = — 0 " 01 01 01 - v | @
T ptq=k—2 \®\ \ /@/ p+q=k—1 0
0 0

All the terms occurring in the right hand-side give elements in the kernel of HY, except
for the last sum with p = 0 and ¢ = k£ — 1, which gives

The computation of 9! is proved. We now compute 9?. By Lemma 2.3.6, we have

; 9°(2) =

[S))
[}
—~
(e}
S—
I
o — 1o
Q
[}
—~
—_
N~—
I
= — =
N — Do
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By Corollary 2.3.8, we have

[\]

0

—_

0
a(%)(ﬂ) =

; 0(21)(Q) =

o1 1 02
| | |-
0 o 0

and
12

2
0 (012) = + 1.
01 012

012
|
0

As before, we can compute by hand 82 (O_ ) by using Theorem 2.3.7. We obtain

Ip(012) == N o+ N\ + N S
01 0 0

12 12 012 (01+12) 02 12

We now compute 8(2k) (012) for every k > 3. We use that

00 (012) = —HID3, 00 (012) — HYOG, 1)00,(012) — Y~ HIOZ, 07, (012).

p+q=k
q7#0,1
p#0
We have
12 012 12
H3O50%)(012) = — & +  \ O
01 0

by induction hypothesis. We now compute HY9? (e 1)8(21)(012) We have

012
0
192 012 01
HyOhy || = N0
01 0
and
2
012
02 02 12 <J+L+Z Ny > (J+E+Z Ny
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where we sum over all such trees with k4 1 vertices which contain at least one element
02. Finally, for every p,q such that p+ ¢ =k,q # 0,1 and p # 0, we have

01+12+Z \”/ (01+19+Z \“/ 2)
01
—H30%, 0%, (012) Ej \/

where we sum over all such trees with p elements 01 and ¢ — 1 elements 12. This
concludes the proof of the computation of 9.

We only give the ideas for the computation of 9%. By induction on k > 0, we first
two lines are given by 9,00 (0123). The tree

123

will give trees of 8&,_1)(0123) with 0 as root on which we add a branch linked to the
root with 03 as non-root vertex. We thus can focus to trees with no elements 03. The
trees with no element 03 of the third line are obtained from the differentiation of the

trees of the form
23
®
012

for some 1 < i < k —1. The trees of the three last lines with no element 03 is obtained
by the differentiation of trees of the form

13 123 12023
o |
m%
for some i,5 > 0 such that 1 <7+ 5 <k — 2.

The lemma is proved. O

2.3.3 A morphism from PreLie,, to Brace ® B¢(A~'Brace")
H

In this subsection, we construct a morphism PreLie,, — Brace @ B (A~ Brace")
H

which will give, together with Theorem 2.3.3, a morphism of operads Prelie,, —>
Brace ® &.
H

Recall that, for every operad P such that P(n) is finite dimensional for every n > 0,
we have a morphism of operads

Lie(e, —» P @ B(A'PY)
el ZzeB(n) r X 1IgY
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where B(n) denotes a basis of P(n), and where Lie,, = B°(A"'Com") is the operad
which governs Lie algebras up to homotopy. Recall also that we have a morphism of
operads Lie,, — PreLies given by the morphism of symmetric sequences

Perm — Com
ey +— 1 7

Lemma 2.3.10. There exists an explicit lift of the diagram

Lie,, — Brace @ B¢(A~'Brace")

H
o
773

Prelies

Proof. Giving a morphism Prelie,, — Brace ® B°(A™'Brace") is equivalent to
H

giving a Maurer-Cartan element f in the pre-Lie algebra HomgSqu(Permv,Bmce ®
H

B¢(Brace")) (see for instance [LV12, Theorem 6.5.10]). By symmetry, it is sufficient
to give the image of e} for every n > 1. We set

flelh) = — § T 'TY,
TePRT (n)
r(T)=1

We check that d(f)(et) + (f * f)(e}) = 0, where * denotes the pre-Lie product of

Homgsqu(Permv, Brace ® B¢(Brace”)). We first have
H

dif)er) =d(f(e)) =~ > Y Te(EHT/S) os=7'SY).
TePRT (n) SCT
r(T)=1

We now compute (f * f)(e}). Recall that

Aef)= Y dod;

p+g=n+1
P,q>2
Yk A1 A(el) = > § &
p+q=n+1 i=1
P,g>2

The A; part gives

> > 3 Y w (UaV)aw (5710 e 2VY),

p+Hg=n+1 weSh.(q1,..., )UePRT ) VEPRT (q)
P,q=>2 r(U)= r(V)=1
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and the Ay’s part for k& # 1 gives

SIDIEDY YooY wUav)ew (BT e nTVY).

pt+q= n+1 k=2 weShx(1,...,q,..., UGPRT( ) VEPRT (q)
P> b r(U)=

Let T € PRT(n) be such that r(T) = 1. Consider a term w - (U o, V) occur-
ring in one of the two previous sums, with & > 1, w € Sh.(1,...,q,...,1),U €
k

PRT (p),V € PRT(q), such that T occurs in the expansion of w - (U o V). We

see Uand VasU € PRT(1 < -+~ < k—-1<V <k+gqg< - < p)and

Ve PRT(k < - < k+q—1). Because w € Sh,(1,...,q,...,1), the compos-
k

ite w - (U o V) is equal to the composite (w - U) oy (w- V) where w - U is U seen
nPRT1 < -+ <k—-1<V<wk+q) < - <wlp)and w-V is V seen in
PRT (k=w(k) <--- <w(k+q—1)). Thus, by definition of the operadic composition
in Brace, the tree w -V can be seen as a subtree S C T such that T/S =w - U.

In the converse direction, let S C T. Let k = min(Vs) and ¢ = |S|. Let wg :

[k, k+q—1] — Vs and wyys : [1,n] \ [k + 1,k + g — 1] — Vz/s be the unique

order preserving maps between the two considered finite sets. Then, by definition,

w = wr/sows € Sh(1,...,q,...,1). We finally set U =w™'-(T/S) and V =w™'- 5.
k

Because T'/Sog .S obviously contains the tree T', we have that T" occurs in the composite

w- (UopV).

We thus have proved that

TENICIENDY T®(221(T/S)V 05215V>-

TePRT (n) ScT
r(T)=1
The identity d(f)(e}) + (f = f)(e}) = 0 follows. O

We now prove Theorem D.

Theorem 2.3.11. There exists an operad morphism PreLlies,, — Brace ® & which
H

fits in a commutative square

Prelie., — Brace ® £

l H
PreLie ———— Brace
Proof. The morphism Prelie,, —> Brace ® £ is given by the composite of the
H
morphism Prelic,, — Brace @ B¢(A~'Brace") given by Lemma 2.3.10 with the
H

morphism Brace @ B¢(A~'Brace") — Brace ® £ given by applying the morphism
H H

B¢(A'Brace") — £ defined in Theorem 2.3.3 on the second tensor. The commuta-
tive diagram is an immediate check. O]
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Corollary 2.3.12. Every Brace®E-algebra L admits the structure of a T'(PreLies, —)-
H

algebra.

Proof. Using that the action of ¥,, on (Brace ® £)(n) is free and the previous theorem,
H

we define, for every Brace ® E-algebras L, the composite
H
['(PreLliey, L) — T'(Brace ® €,L) +—— S(Brace ® £, L) — L.
H H

This gives a ['(PreLies,, —)-algebra structure on L. O

In particular, if L = A ® ¥ F where A is a brace algebra and E a £-algebra, then
A®XE is a TAPL-algebra. We can compute the weighted braces of A ® X F as
follows. Let [ : S(Brace, A) — A be the brace algebra structure on A, and let
OF be the twisting morphism on Brace?(XE) induced by the B¢(A~!Brace)-algebra
structure of F (see Theorem 2.3.3). Then, for every a,by,...,b, € Az, y1,...,y, € LF
and r1,...,7r, > 0, we have

a’®x{[b1®y17"'7bn®yn]}r1 ..... Tn

= Z il(T@a@ca(l)@)'~~®CU(T))®8E(TV®$®ZU(1)®'"®ZU(T)),

c€Sh(r1,....,rn) TEPRT (r+1)
T canonical

where we have set r = ri+---+r,, c1,..., ¢, =by,...,b1,...,b,,....,bpand z1, ..., 2, =
S—— S——
T1 Tn
XiyeveyX1yey Ty, .., Ty The sign is given by the permutation of the ¢;’s with z and
NS -~ > -~
T1 Tn

the z;’s, and the permutation of 9% with a and the ¢;’s.

2.4 The simplicial Maurer-Cartan set of a complete
brace algebra

The goal of this section is to define the notion of a simplicial Maurer-Cartan set
MC,.(A) associated to a brace algebra A, and to study the homotopy type of this sim-
plicial set. Explicitly, the n-component MC,,(A) will be defined as the Maurer-Cartan

set of A ® X N*(A"™) for the FA/Pfoo—algebra structure given by Corollary 2.3.12.

In §2.4.1, we define the simplicial set MC,(A) and prove the first part of Theorem
E which asserts that it is a Kan complex.

In §2.4.2, we prove the remaining part of Theorem E, which gives a computation
of the connected components and the homotopy groups of MC.(A). More precisely,
we first compute the connected components, whose computation is similar to [Ver23,
Theorem 3.6], before computing the 7y, w9 and then the , for n > 3.

In §2.4.4, we prove Theorem F, which is a higher version of the Goldman-Millson
theorem (see [GMS88, §2.4]). Our proof basically follows the proof found in [MR23b,
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§6], which will be adapted to our context.

In §2.4.5, we compare our simplicial notion of Maurer-Cartan set defined for com-
plete brace algebras to the notion of simplicial Maurer-Cartan set associated to a
complete Lie algebra, and prove that in fact, these two simplicial sets are weakly
equivalent.

2.4.1 The simplicial set MC,(A)

Let A be a complete brace algebra. By Corollary 2.3.12, and using that N*(A"™) is
a E-algebra, we obtain that AL N*(A") = A ® IN*(A") is a T'APL..-algebra with
the filtration
Fr(A®@ EN*(A")) = FLA® SN*(A").

where we denote by (FjpA)g>1 the filtration on A.

Definition 2.4.1. Let A be a complete brace algebra. Its simplicial Maurer-Cartan set
is the simplicial set MCq4(A) such that

MC.(A) = MC(A & SN*(A®)).

Proposition 2.4.2. The previous definition defines a functor MC, from the category
of complete brace algebras to the category of sets.

Proof. This follows directly from the fact that every brace algebra morphism f : A —
B which preserves the filtrations gives rise to a morphism of Brace ® A€-algebras
H

f®id: A® EN*(A") — B ® XN*(A") which preserves the filtrations, and then to
a strict morphism of I'APL .-algebras. ]

We aim to prove that MC4(A) is a Kan complex. We will basically follow the proof
of the analogous theorem in [KW21]. Recall from Proposition 2.1.32 that we have
morphisms ¢! : N*(A") — N*(A") and b : N*(A") — N*~!1(A") which satisfy

dhl + hid =id — ¢’
These relations can be carried to A @ XN*(A™) by setting H: = id ® Lh! and ¢! =
id ® Yt . Accordingly, we have

dH' + H'd = id — ®' .
Note that if v € MC(A ® XN*(A"™)), then the identity

x)+ Z z{xlr =0
k>1

gives, after composing by H!,

v =@ (x) + dH}(x) = > Hi(x{z]).

k>1
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We give the following lemma, which is the analogue of [KW21, Lemma 6.5]. For
our needs, we need an analogue valid for every complete 'APL.-algebra structure on

A® SN (AM).

Lemma 2.4.3. Letn >0 and 0 <t <n. Let A € dgl\ﬁ&iw Consider any complete
LAPL..-algebra structure on A @ SN*(A") such that ® : A @ IN*(A") — A®
Y N*(A™) is a strict morphism. Then the map

MC(AQSN*(A") — (MC(A® SN*(A")) N Im(®%)) x Im(dH?)
x — (2},(z), dH, (2))

18 a biyjection.

Proof. We first note that the above map is well defined since ®! is a strict morphism
by hypothesis. Now, let e € MC(A®@ SN*(A™)) N Im(P:) and r € Im(dH"). We set:

g = e—+r
Vk >0, 0541 = €+7’—ZH2(O%{[O%]}Z)

>1

This defines a Cauchy sequence (ay)g. Let a be its limit. We then have

a=e+r—> Hi(afal)

1>1

From this identity, we deduce ®'a = e and dH'« = r. We just need to check that
a € MC(A® XN*(A™)). Using the relation

dH, + H!d = id — ®'
we obtain
)+ ) Hi(d(efah)) = afal + @ (Zaﬂa]}l) ,
>1 >1 >1

and then, because @' is a strict morphism and that e € MC(A ® ZN*(A")),

)+ afali=_ H(dafal)

1>1 1>1
Let R(a) = d(a) + > 15, afali. We use the identity
> afahfal,+ D alefal, b, =0
ptg=l ptg=1-1
for every [ > 1. We thus have
d(afal) =— Z aofal{al, - Z afafall,, ali,

p—:ciozl p+q=Il-1
q
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so that

Zd aflal) ZR Hal, — Za{[R(a),a]}q.

>1 a>1 >0

This leads finally to the identity

==Y H(R(a){ab,) =Y Hi(aR(a),ali,).

q=>1 q=20

It follows from this identity that if R(a) € Fi(A) @ EN*(A") for some k > 1, then
R(a) € Fr41(A) @ EN*(A™). We thus have R(a) = 0 so that a € MC(AQ EN*(A™)).
We then have a bijection which has as inverse this previous construction. O]

Definition 2.4.4. A simplicial FA/Pfoo—algebm 15 a simplicial object in the category
FA/PTOO. A simplicial FA/PTOO-algebm A is strict if the face and degeneracy maps of A
are strict morphisms of FA/Pfoo—algebms. A morphism of simplicial FA/PTOO—algebms
¢ : A — B is strict if, for every n > 0, the map ¢, : A, — B,, is a strict morphism
of FA/PTOO-algebms.

Theorem 2.4.5. Let A, B € dgMody be such that A ® YN*(A®) and B @ XN*(A®)

are endowed with the structure of simplicial FA/PTOO—algebms. Let f: A— B be a
surjective morphism in dgModk such that f ®id : A @ XN*(A®*) — B @ XN*(A®) is
a strict morphism.

Then MC(f ® id) : MC(A® XN*(A®)) — MC(B ® XN*(A*)) is a Kan fibration.

Proof. Since the 'APL.-algebra structures are compatible with the simplicial struc-
tures on A ® XN*(A®) and B ® XN*(A®), we can follow the same proof as in [KW21,
Proposition 6.6] to obtain the result. O

Applying this result to B = 0 thus gives the following corollary.

Corollary 2.4.6. For every A € dgMody such that A® YEN*(A®) is a strict simplicial

FA/PTOO-algebm, the simplicial set MC(A @ EN*(A®)) is a Kan complex.
In particular, for every complete brace algebra A, the simplicial set MC4(A) is a Kan
complez.

2.4.2 Connected components and homotopy groups of MC,(A)

We are now able to compute the connected components and the homotopy groups
of MC4(A) for a given complete brace algebra A. For this purpose, recall from
[Ver23, Theorem 2.15] that any brace algebra A is endowed with the structure of a
['(PreLie, —)-algebra via the composite

[(PreLie, A) — T'(Brace, A) +—— S(Brace, A) —— A.
In this setting, we recall from [Ver23, Definition 2.19] the operation ® defined by

r© (1+y) ::Zw(y,...,y)

n>0
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for every x € A and y € Ag. By [Ver23, Theorem 2.24], we have that this operation
induces a group structure on the set G = 1 + Ay with the product

(1+:1:)©(1+y):1—|—:U—|—y+Za:<y,...,y>.

n>1 n

This group is called the gauge group associated to the brace algebra A. In the following,
we use the operation © defined by

Ty =1+ 1y -+ x{y,...,y),
y v+ Y,y

n>1 n

for every x € A and y € Ag. Note that the group (1 + Ay, ®, 1) is isomorphic to
the group (Ao, ®,0). Using this identification and [Ver23, Theorem 2.29], we have an
action of (Ap, ®,0) on MC(A) by

-7 = (14 2z(1) —d(z))@z"*
for every x € Ag and 7 € MC(A).

By Corollary 2.3.9, we have an obvious identification MCy(A) = MC(A), using
the Maurer-Cartan set of a I'(PreLie, —)-algebra (see [Ver23, Definition 2.17]). This
identification is given by sending 7 € MC(A) to —7 ® £0¥ € MCy(A).

In this subsection, in order to write easier formulas, for every x € N,(A™), we drop
the desuspension X! on the element X'z € ¥71N,(A"). Analogously, we drop the
suspension X on elements of XN*(A™).

Connected components

We first compute the 5. We begin by the following lemma.

Lemma 2.4.7. Let 19,71 € MC(A). Then every element o € MCi(A) such that
doox = 19 and diow = 7 are written

a=-1®0"-11" —h®01"
where h € Ag is such that
d(h) =19+ h{t) — 11 © (1 + h).
Proof. Let o € MC;(A) be such that dya = 79 and dyov = 71. We write

a=-1®0" -1 —h01"

for some h € Ay. We make explicit the Maurer-Cartan condition on . We have

d(a) = —d(m1) 0¥ —d(1) ® 1Y + (=d(h) + 1 — 1) ® 01"



108 CHAPTER 2. Pre-Lie algebras up to homotopy (... )

Let p > 1. By formula (v) of Theorem 2.2.22, we have that

aflal, = Z 1 R0 ®0%,—-10®1Y,—h @01 ] pops
p1+p2+p3=p
o Z To ®lv{[_7'1 ®Qva_70 ®lv7_h®m\/]}p1,p2,p3
p1+p2+p3=p

— Y he0{-n®0, ~n &L, ~h @01 N

p1+p2+p3=p

By the computation of @' in Corollary 2.3.9, the first sum gives non-zero elements only
for the case p; = 1 and p, = p3 = 0, and the case p; = p; = 0. This then gives

- ® 0" — h,...,h) ®01V.
7'1<7'1> ) Zﬁ( > Ul

n>1 n

The second sum gives non-zero elements only for the case p, = 1 and p; = p3 = 0. We
obtain the term
—T0 <7’ 0> (29 lv.

Finally, the third sum gives non-zero elements only for the case p = 1 and p; = p3 = 0.
We have the term
h<7’0> & m\/.

At the end, we have
Za{[&]}p = | —=d(h) + 70 + h(10) — Zﬁ<h, .., hy | ®01Y.

p=>0 n>0

n

Then, the Maurer-Cartan condition on « is equivalent to the equation
d(h) =170 + h<70> — 71 © (]_ + h)
which proves the lemma. O]

Recall that the Deligne groupoid associated to A is the category formed by Maurer-
Cartan elements with as morphisms the elements of the gauge group (see [Ver23,
Proposition-Definition 2.22]).

Theorem 2.4.8. Let A be a complete brace algebra. We have a bijection
7To(MC4(A)) =~ myDeligne(A),
where we denote by moDeligne(A) the set of objects in Deligne(A) up to isomorphisms.

Proof. Recall that
To(MCe(A)) = MCy(A)/ ~,

where ~ denotes the homotopy relation in sSet. Consider the projection f of MCy(A)
on MC(A)/G, where G denotes the gauge group of the I'(PreLie, —)-algebra A. Let
70,71 € MC(A). By Lemma 2.4.7, the elements —7; ® 0¥ and —75 ® 1Y are homotopic
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in MCy(A) if and oan if there exists h € Ay such that h - 79 = 7, which proves that
f induces a bijection f : mo(MCqe(A)) —> mDeligne(A). O

The group m(MC.(A),T)

We now compute 71 (MC4(A),7) for a given 7 € MC(A). Let Autpeiigne(a)(7) =
{he€ Ay | dh) =17+ h(r) —7©® (1+h)}. We have the following lemma.

Lemma 2.4.9. Let A be a complete brace algebra and 7 € MC(A). For every h,h' €
Autpeligne(a)(7), we write h ~ b’ if there exists ¢ € Ay such that

h=n =d)+ )+ > r(h,.. b 1K),

0,920 p q

Then ~ is an equivalence relation on the set Autpeligne(a)(T). Moreover, the circular
product © is compatible with ~,, so that the triple (Autpeiigne(4)(T)/ ~r, ®,0) is a
group.

Proof. The relation ~, is reflexive (just take ¢» = 0 so that h ~, h for all h €
Autpeligne(a)(7)). We prove that this relation is transitive. Let h,h’, h” € Ay be such
that h ~, b/ and b’ ~, h”. Then there exist 1,1’ € Ay such that

h—h =d) +(r) + E T(h,...,h,0 B ... ) 2.4.1
(V) +¥(7) — ( q (0 q ) ( )

N —h" = d + T . ,h/, /, h//, cey h'y. 2.4.2
(¥ §q>0 q (G q ) ( )

We set " =+ " + > ooy Ry B R BT BT, and prove that
H/—/ H,_/ —_——

T

h—h”:d( " +¢" Z h 1/}// h// ,h”>.

p,q>0 p q

Let us analyze the right hand-side. We analyze the terms given by d(¢") and compare it
with the others given either by ¢”(7) or by the terms of the form 7(h, ..., h, " h" ... h").
We first have

d(W) +dW') =h—=hn"—(r) —'(1)
= > b,k KW - > 7 W s Wl ),

2,920 q,r20

p q q T

We now differentiate the sum which occurs in the definition of ¢”. By the Leibniz
rule in the brace algebra A, and by applying the differential on 7 € MC(A), we, in
particular, obtain the sum

D D G N R RN Y Ty Ly 1
—— N—— N——

p,q,r>0
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)

This can be computed by using the brace algebra structure of A:

= Y b h R R R =
N—— —— N——

P,q,r=0 p q r

— > bt @ (LA R) b b B R
—— N—— N—_—— N—_——

P1,p2,4,r=>0 p1 P2 q r

D D (O (Y RN NN ) N IS RN e )
—— —— —— N — ——

p,q,?‘,s,tZO P S t q r

+ Y T WK T e (L) R R

D,q1,92,720 P @ @ r

+ Y wlh L hw W R (W R )RR

D,q,7,8,t20

~
P q S t T

= 3" b b R R e (L R R
—— N—_—— N—— N——

p,q,m1,m2>0 M r " ro

= Y b (b R R,

D,q,7,5,t>0 P q s t r

The remaining terms obtained by the Leibniz rule in the sum occurring in the definition

of " are

— Y b hed(B) b b B W R R
N—— N—— —— ——

P1,p2,4,7 >0 1 P2 q r
— Y b hd(W), W W R R
p,q,m2>0

p q r
+ Y bk B R AR R R

P,q1,92,7>0

p q1 q2 T
+ > wlhe b I W) R R

p,q,r>0 p

q
D D R N Sy iy Ly Y (0 WL 1
—— —— N—— N——

P,q,r1,72>0

r

p r T1 T2

By using equations (1) and (2), the definition of " and that h, b/, " € Autpeligne(a)(7),

we obtain
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dW") =h—h' =/ (r) =" (r) = > r(h,.. how WK

p,9>0 p q

D DR T SR N !
q,r>0 q r

— Y wlh b)Y b B W R
\—— N—— N—— N——
P1,p2,4,7>0 p1 P2 q r
= > wlhy b b= B () B R
—— —— ——
p q r
D DR (RN RN RNy T ey N SRy RN T !
—— —— —— ——

D,q1,92,7 20 P T @ r

D X (RN RN N ey R CON L 1)
N—— N—_—— N——

p,q,m>0 D q r
- Ej m(hy . hop B R R R T+ R ) R R
N—— N—— A,_/ N——

p,q,71,72>0 p M g

_ Z h ¢// w—¢/,h”,...,h”>.

p,r>0

Now, by some variable substitutions, note that we have the identities

S orlh o hh—WR R R
~—— \W_/ ~——

p,q,r>0

P T
_ Z h 1/} h// h// Z . h/ w h// ,h”);
p,r>0 p r q,r>0 q r
> rlh how W R R = BR R
0 ———— H/—/ —_———
PG> M r
= h B, . h n'.o.o R,
Z K )=y Tl 0, h)
p,q>0 p q p,r>0 p r

This finally gives
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d(") =h —h" =" (1) = '(7)
— N b b () b b B R R
H,_/ —— —— ——

P1,p2,4,r>0 D2 q r
+ > 7 oI SO R O X
p,q,r>0 p q r

S DR (RN RN RNy 0T ey N RNy Ty T !
W—/ —— —— ——

P,q1,92,7>0 o @ r
— Z h RN SN T CR L
——— S———r
p,q,7>0 p q r
— > b b R R T BT R
—— ——— H,_/ —_——
p,q,r1,72>0 p r T2
_ Z h w// h// h//)
p,r>0 p r

We also have

/l/}/,<7—> :1/J<T>+1/)/<T>+ Z T<h7"'7h7 T+h<7->7h7"‘7h7 1/)7 hl?"'7h/7 1/)/7 h//7"'7h/,>

P1,p2,4;720 p1 P2 q T
- > R N CIPPP AL LY i
p,q,7>0 p q r
D (N TN N I RS AN Y R
PaQ17q27”'20 P Q1 q2 r
+ > by W R )RR
P,q,r20 p q r
+ Y b how WK R R T BT R R,
p7qzrl7r220 P q r1 o

At the end, we obtain

A" + "7y = h— B — T TRV L
(") + " () D b B )

which proves that h ~, h”.

We now prove that if A ~, h', then b’ ~, h. We use the previous construction.
More precisely, let 1) € A; be such that

h=h =d@)+ )+ > 7(h,... b 1, 1),

p,g>0 P q

We search some element 1)’ such that the associated " previously constructed for the
transitivity is 0. We set 1), = —1 and, for all n > 0,
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Yr === Y T, b B R b D),

p,q,r>0 q q r

We obtain a Cauchy sequence (¢,),. Let 9" be its limit, which satisfies

o= == Y (b hp B R b b,
N—— N—— ——

p,q,r>0 p q r

By the same computations as for the proof of the transitivity, we can check that
satisfies the equation

B —h=d@) + (1) + B, W k. R,
(') + /() p%zjoﬂ P )

which proves that i’ ~, h.

We thus have proved that ~, is an equivalence relation. We now prove that the
circular product ® is compatible with ~.. Let h, hi, ho € Ay be such that hy ~, ho.
Let ¢ € Ay be such that

hy — hy = d( Y+ Y T(ha, hll,w,hQ,...,hQ). (2.4.3)

p,q>0 o~

q

We prove first that hy®h ~, he®@h. Let ¢’ := 1 ® (1 + h). We need to show that

®h — hy®h = d(¥) +¢/(7) + Y 7(lu®h, ..., m@h, ¥, ha®h, ..., h,®h).

> TV VvV
,g=>0 p q

We first compute d(¢'). From [Ver23, Lemma 2.28], we have
d(¢) = d() © (1+h) =y @ (1 + h;d(h)),

where we have set, following [Ver23, Definition 2.27] in the case of a complete brace

algebra,
© (1+b;c) ZZa b,...,b).

n>0 k=0

for every a € A and b,c € Ag. We have

d(W)®(1+h) = ®h—ha@h—1)(T) @ (1+h) = Y 7(ha,. .. hl,w,h2,...,h2>@(1+h).

p,q>0

By the second formula of [Ver23, Lemma 2.28], we have
W)@ (1+h)=v© (1+h7e(1+h).

Finally, we have



114 CHAPTER 2. Pre-Lie algebras up to homotopy (... )

ZT<h17"'7h17¢7h27"'7h2>@<]‘+h)

p,g>0 e DY

= Z T(M®h, ..., ®h, ¢ ® (1 + h), ha®h, ..., h,®h).

-~

P q

We thus have

d(Y") = hi©h — ho®h — 1 © (1 + h;7© (1 + h))
- > hl@h i ®h, Y ha®h, ... ha®h) — 1 @ (1+ h;d(h)).

> Vv
,9=>0 q

Since we have, by [Ver23, Lemma 2.28]|, that

() = v @ (14 hi 7+ h(T)).

we obtain at the end

d(y’ VY T (n®h,..., Ok, W', h2®h, ..., haOh) = @h — hyBh

> vV
,9=>0 q

which proves that h;©h ~, ho©®h.

We now prove that h®h, ~, h@hy. Let 1)/ = 1/}—1—210#120 h(@l, by R, h%>.

=9

¢

We show that

hohy — hOhy = d(/ (1) + 3" 7(h®hi, ..., hBhy, ¥/, hGhs,. .., hohs).

~
p,q>0 q

~
p

We first compute the sum > o d(h)(h1,... 01,9, ho, ... hy). We use that d(h) =

-~

p q

T+ (1) —T7® (1+h) to get
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> d(h)( hl,...,hl,w,hz,...,h%) =Y 7(hi,. by B, )

p.g>0 ~ p,g>0 e q
+ Z hhl,.. hl,T@( +he), by, by, By h)
P1,P2,9>0 p1 ;; ?
+ Z hhl,...,hle<z7,1,...,hlj,w,ﬁ,z,...,hg}>,!’b2,...,h2}>
P,q,5,t>0 - t: T :1,
- ) hhl,.. Jhi,, hay .o ho, T © (14 hy), ha, ... ha)
~~ v NS ~~ e N s
191,920 @ @
-y T(@@hl,...,h@hk,w+h<@1,...,hl,@b,f@,...,f@),f@hQ,...,h@hg).
P.,5t20 M b ¥ b

Using the Leibniz rule, we obtain

d()=d@)+ > 7 hl,...,hl,@b,hQ,...,h%)

> Vv
p,9>0 q

+ Z hhla-- hlyT@(1+h1) Z’le"‘ahquvbaZ’LQv"‘?h%)

P1,p2,420 p1 z;; :1,
+ ) hhl,...,hL,T@l,...,hl,l/z,@g,...,h2>,@2,...,h2>
D,q,5,t>0 o \sr T ‘qr
- > hhl,.. a0, oy ho, T ® (14 h), R, ..., hy)
Pq1,9220 @ a
-y T<h@h1,...,h@hl,w+h<h1,...,hlj,w,ﬁz,...,h%>,@@h2,...,h©h%>
P,q,5,t20 o ‘sr T ‘qr
+ Z h'hlv" hlvd(hl)vhb'"7h1/7¢7@27"'7h%>
P1,p2,q4>0 e M
+Zhh1,.. hy, d(¥), by, ... hs)
p,q>0 q
Z h(ha, ... hl,z/z,hg,...,hg,d(hg),hg,...,hg).
~ 2 ~~ o ‘,—I
P,q1,42>0

q1 q1

Using equation (3) and that hy, by € Autpeiigne(a)(7), we deduce



116 CHAPTER 2. Pre-Lie algebras up to homotopy (...

d(y') = hy — Y+ D> h(h b hy o hr) by he B
P1,P2,4>0 pl ;g ‘qr

> hhl,...,hl,w,hg,...,h2,7+h2(r>,h2,...,h2>

~ ~" - \“f_/
91,9220 T a
_'_Zhhla" h17h1 h2_¢<7—>7h‘27"'7h‘2>

p,q>0 q
_ Z 7(h®hy, ..., hEOhy, W/, h@hy, . .., h@hs).
p,¢,>0 > v

Since we have

Zhhl,.. hi hy — ho, ha, ... hy Zhhl,..., Zth,..., :
p,q>0 p q p>0 p r>0 r
we finally obtain
d(V) = h@hy—h®hy—(T)+ > hih, ... by T () b e o)
P1,p2,4>0 p1 e M
> hhl,...,h1,¢,h2,...,h2,7+h2<7>,h2,...,h2>
"~ ~~ H’_/
D,q1,92>0 T @
- Zh byt (), hay ... h)
——
p,g>0 q
— Z T(h@hy, ..., hOhy, ¢, h@hs, ..., hohs).
p,4,>0 e e
We also have
Y1) Z h{hi, h177'+h1< ), hl, oy ha, Y, hay o h)
P1,p2,9>0 ;; q
+ Z h( hh by, O(T) has - ha)
p,q>0 q
+ Y i hl,.;,hlj,w,hg,.;,h%,r+h2<7),h2,...,hz).
P:q1,4220 P a a2

At the end, we obtain

d(¢/) + ¢/<T> = h@hl - h@hZ - Z T<ﬁ@h17 s 7h@h37 ¢,75L®h2a ey h®h’2>

p,¢;>0 v

~
p

which proves that h@h, ~, h®hy. The lemma is proved.
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Theorem 2.4.10. Let A be a complete brace algebra and 7 € MC(A). Then
1 (MCa(A), T) >~ Autpeligne(a)(T)/ ~+ -

Proof. Recall that Autpeligne(a)(7) = {h € Ag | d(h) = 7+ (1) =7 @ (1 + h)}. Let
h € Ay. By Lemma 2.4.7, we have that h € Autpeligne(a)(7) if and only if

—7®(0V+1Y) - h®01Y € MC(A®XN*(A").
We thus have a bijection
f : AutDeligne(A) (T> — MCI(A)T

where we denote by MC;(A), the subset of MC;(A) given by elements whose 0 and 1
vertices are given by 7. Consider now h, h’ € Ay such that

dh) =17+ h{t) — 7@ (1 + h);
dhy=71+h{ry =1 (1+ ).
Let £ € MC5(A) be such that di€ = f(h) and ds§ = f(h'). We write £ as
E=—T0V+1V+2") K ®01Y-h02"+v¢®012"
for some ¥ € A;. We make precise the Maurer-Cartan condition on £. We first have
d(&) = —d(t) @ (0¥ + 1V +2Y) —d(h') ® 01V — d(h) ® 02" + (d(¢)) — h+ h') ® 012".
By Lemma 2.3.8, we have

&P = —7(r) @ (0¥ + 1V +2Y) — (7(h') — h'{(r)) ® 01"
= (7(h) + h(r)) ® 02" + (7(4) + ¥(r)) ® 012",

Let » > 2. From the computations of ' and 9% in Corollary 2.3.9, we deduce

ey = —7(h, h>®01v—r<h Myen'+ > T by, W, h)®012Y.

T r ptg=r—1 p q

We thus have proved that ¢ is a Maurer-Cartan element if and only if

h—h =d@)+ )+ > 7(h, .. b1, ).

P,q20 p q

Equivalently, we have that [f(h)] = [f(R')] if and only if h ~, h’. We thus have a well
defined bijection B
f : AU-tDeligne(A) (7—)/ ~r— T (MC.(A), 7—)7

We now check that f is compatible with the group structures. Let h, b’ € Ay be such
that « = =7 ® (0¥ + 1Y) —h®01Y and ¢/ = —7® (0¥ + 1Y) — K’ ® 01" are Maurer-
Cartan elements in MC(A @ XN*(A')). As we have seen before, by Lemma 2.4.7, it
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is equivalent to ask
dlp) =7+ h(r) — 70 (1 + h);
dh)y=74+n{r) -1 (1+1).
By Corollary 2.3.9, we see that

—r R0V +1Y+2Y) - N @12 — (hoh) ® 02" — h® 01 € MC(A® SN*(A?)).

We then have
[a] - [o] = [T ® (0" +17) — (h@h') ® 01"]
in m (MC.(A), 7), which gives

f([e] - [o]) = h@h' = f([o]) © f(la']),

showing that f is an isomorphism of groups. O

The group m(MC.(A),T)

We now compute the group m(MC4(A), 7). We begin by general lemmas that will
also be useful for the computations of 7, (MC,.(A), ) for n > 3.

Lemma 2.4.11. Let T be a canonical tree with |T| > 3, and n > 1. If the first branch
of T has only one vertex, then there is no element of the form 0,...,n € X7IN,(A")
among the non-root vertices in the tensor products produced by T @ Aup(0---n) €

Brace® (X1 N, (A™)).

Proof. For every finite set E and k € E, we denote by 7y : x(£) — x(£ \ {k}) the
morphism which forgets the element k. If a surjection has multiple occurrences of the
element k, then its image by mg, is 0 by convention. Note that if A and B are disjoint
finite sets, then for every u € x(A),v € x(B), we have 7y (u-v) = gy (u) - Ty (v) in
X(AU B).

Let T be a canonical tree with |T| > 3. By Lemma 2.3.5, there exists ur €
x(Vr\ {1}) such that

We write uniquely ur as

mr
_ Z T
i=1
where AT ... AT e Kand uk, ..., u"" are non degenerate surjections. We prove that
1> » Ymp T ) Y )

for every 1 <i < mg and 2 < k < T,
Ty (2 uyp) = 0.

It is true for k = 2, since u, € x(2 < --- < |T']) so that there are at least two occurences
of 2 in the surjection 2 - u’.. Suppose now that k& > 3. We prove the statement by
induction on |T'|. If |T'| = 3, the first tree of Example 2.3.2 gives TR(ur) = £1232 and
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731(232) = 22 = 0. We now suppose that |T'| > 4. By the proof of Lemma 2.3.5, we
have

Tr(pr) ==Y +12- my(TR(urys) 0s TR(us)).
ScT

Let S C T be such that bg = byyg = 1. Suppose that |S|,|T/S| # 2. By Lemma 2.3.5,
there exist ug € x(Vs \ {r(S)}) and ur/s € x(Vrys \ {r(7/S)}) such that
TR(pus) = r(S)p-us;
TR(urss) = r(T)S)q- urss

where p € Vg and ¢ € Vp/g are the second element of their respective totally ordered
set. If 7(S) # 1, then r(T/S) =1 and ¢ = 2, since by = 1, so that

TR(pr/s) os TR(ps) = 12 - (urys os (r(S)p - us))

whose associated term in the sum is 0. Suppose now that 7(S) = 1. Then r(7/5) =
so that

TR(pr/s) os TR(ps) = 1p - ug - q - ugys.

We write ug and uz/s in the basis given by non degenerated surjections:

mr

\

AS/\T/ s

TR(pr/s) os TR(ps) Z Ip-us-q- Uz‘f/g-

IIM

Since k # 1,2, we have, for every 1 <¢ < mg and 1 < j < mqyg,

Ty (12 mo(1p - ulg - q - upg)) = 12 - g (p - u) - moy (q - gy s)-

By induction hypothesis (on S if k € Vg, on T'/S else), we obtain 0. Suppose now
|S| = 2 and |T/S| # 2. By the same argument as before, we can restrict to the case
r(S) =1 (which implies that r(7'/S) = ), so that

TR(pr/s) os TR(pus) = 1pq - urys.

where p € Vg and ¢ € Vp/g are the second element of their respective totally ordered
set. We have

mr/s

12 - (T R(prys) os TR(ps)) = 12pq - urys = Y N/*12pq - .

i=1

Let 1 <4 < mys. If p = 2, then the corresponding term in the sum is 0. If p # 2,
then ¢ = 2 so that we need to compute

L-my (202 - uiT/S).

If £ = p, ﬁhen Tipy(2p2 - ui;p/s) =22 ui;p/s = 0. If k # p, then (22 - ui;p/s) =
2p2-m} (uy)g), which is 0 by induction hypothesis on 7'/.S. Suppose now that [1'/S| = 2
and |S| # 2. As before, we can suppose that r(S) =1 and 2 ¢ V5. We then have

TR(prs) os TR(ps) =13 - ug - 2,
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which gives

mg
12 7 (TR(jurys) os TR(ps)) = 123 - us -2 = 3 AF123 - uf -2,

i=1
Let 1 <7 <mg. Then
Ty (23 - ul - 2) =2y (3-uy) -2 =0,

by induction hypothesis on S. The case |S| = |T/S| = 2 gives |T| = 3 which has
already be proved in the beginning of the proof.

We thus have proved that (2 - uf) = 0 for every canonical tree T' such that
IT| >3 and 2 < k < |T|,1 <i < mp. We now prove the lemma. Let 2 < k < |T|. By
definition of the interval cut operations (see [BF04, §2.2.1]), the tensors with a factor
of the form 0,...,n at position k occurring in the expansion of (7' ® Auz)(0---n)
are precisely produced by the surjections 12 - u¥., ..., 12 - w}'T which contain only one
occurrence of k. Let 1 < i < mg be such that v’ contains only one occurrence of k.
The tensors produced by 2 - uf with a degree —1 element at position k are given by
the insertion of the appropriate degree 0 vertex at position k of the tensors produced
by the surjection 7y (2 - u¥). Since this surjection is 0, the lemma is proved. O

Lemma 2.4.12. Let n > 2. Let a,by,... by, € A, let 2,y1,...,Ym € N.(A") be basis
elements and rq,...,r, > 0. Suppose that

|lz| + 71y + - rnym] >0 2.
Then a @ zV{b ®g£v, ey by, ®y_mv]}r1,._.,rm = 0.

Proof. Let r = r1+---47r,. We more generally show that for every p € X77E(r+1),_4
and 21,...,% € N.(A") such that |z| + |z1| 4+ --- + |2;| > n — 2, the evaluation of ;
on the tensor 2V ® 21 ® - -+ ® 2, when using the £-algebra structure of N*(A") is 0.
One one hand, the evaluation of 4 on the tensor 2V ® 2;Y ® --- ® z," is an element
with degree —1 — |z| — |2z1] — -+ — |2;| < 1 —n. On the other hand, since the result
is an element of XN*(A™), its degree is equal or greater than [0---n"| =1 —n. The
evaluation of y on the tensor ¥ ® 21¥ ® - - - ® 2, must then be 0.

To obtain the lemma, we apply this result to 4 = Apur where T'€ PRT (r+1) is a
canonical tree, and 21,...,2, = Y1, .-, Y1, -+, Ym; - - -, Ym Up to a shuffle permutation

71 Tm

in Sh(ry,...,rm). O

Before stating the next lemma, recall that if A is a brace algebra and T € MC(A),
then we have a differential defined by

d,(x) = d(x) +7(z) — (~1)z(r).

We denote by A™ the underlying dg K-module.
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Lemma 2.4.13. Let 7 € MC(A) and n > 1. We denote by MC,,1(A). the set given
by elements & € MC,,11(A) with faces given by 7. Then we have a bijection

F i Zu(A7) — MCrir(A),

given by

f(h)=—1® (i@v> —h®0---(n+1)".

k=0

Proof. Let £ € MC,+1(A),. Then there exists h € A, such that

n+1
{=—7® <ZEV> —h®0 - (n+1)"

k=0

We make precise the Maurer-Cartan condition on . Let p > 2. By Lemma 2.4.11, we
have

n+1
el =) (-1 @k'[he0---(n+1)"],
k=0
+(=1)P"h@0---(n+ D) {h®0--- (n+1)"],.

By Lemma 2.4.12, and since we have n +np > —1 +np > n — 1 because p > 2, we
deduce that £{ £}, = 0. If p =1, then, by Corollary 2.3.8,

n+1

el =—m(n) @ (ZEV> = (r(h) = (=1)"1(7)) ® 0--- (n + 1)".

We also have
n+1

d(€) = —d(1) ® (Z @V> —d(h)®0---(n+1)".
k=0
The Maurer-Cartan condition on £ is then equivalent to
d(h) +7(h) — (=1)"h(r) = 0.
which gives our desired bijection
[ Zu(AT) — MC(A® SN*(A™h),.
O

We now consider n = 2. The computation of m, will emphasize a group structure
on Hy(AT) given by the following lemma.

Lemma 2.4.14. Let A be a complete brace algebra and T € MC(A). Then (H (A7), *.,0)
is an abelian group with the product %, defined by

] *7 (1] = [+ "+ 7, 1]
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Proof. We first prove that if p, p € Zy(A7) then ¢ == p+ ' +7(u, 1) € Z1(A7). We
have

d(p") = d(p) +d(p') — (7, p, p") + 7, 7, 01" — 7 il T)
— {7 (), 1) (s )y — (T, )y — (A (), 1) T, d()).

We also have

Ty = pdr) () (T e 1) =7, ) ATy (7)) =T () ) T, (7))

and

(") = 7{u) + 7) + (7 1)),
At the end, we obtain that d,(x”) = 0, which proves that p” € Z;(A7).

We now show that the product %, is well defined on Hy(A7). Let p, iy, o € Z1(A7)
and ¢ € Ay be such that

1 — pp = d(@) + 1) — (7).
Let ¢ := v + 7(u, ). We show that
fin — pio + 7, 11 — pro) = d(@') + (") — ().

We first compute d(¢'). We have

£
+
B

=
R
£

d(') = d(p) = 7(1, p, ) 4+ 7(p, T, ) + T, 0, T) — (T (1)
— (T, ) — T(d(p), ) + 7(, d(¥)).

We also have

W) = () = 7T ) + 7, T )+ 7, )+ T(dT), ¥) + 7 (7))

At the end, we obtain

d(') + @) = () = — po + (s g1 — pio)
so that
[t g+ 7 )] = [+ pz + 7, p12)]-
By the same computations with ¢ := ¢ — 7(3, u), we can show that

[+ g+ 7, )] = [+ po + 7 (o, ).

The product *, is thus well defined on H;(A”). We now prove that it endows H; (A7)
with an abelian group structure. We prove the associativity of the operation x,. We
have

([ (W) %7 W] = [ g+ p" 7 p1) + 7+ '+ 7 (s ') 1)
] #7 (] %7 [1"]) = T+ p " 7 )"y + 7, 4 " 47 1))
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The difference between the two representatives is
T, T 1)) — (T (s 1) 1),

We show that this element is the image of ¢ := 7(u, i/, i”") € As under d,. First, using
that d(7) = —7(7) and the brace algebra structure on A, we have

d<7—> <,LL, :ula ,LL”> = _T<Ta Hs /LI7 p//> + T</JJ7 T, MI7 /jJH> - T<N7 /LI7 T, /'L”> + T</jl7 NI7 /J/lv T>
R N T e TR TN T R (TR S (7Y
— (T, ), p) T T 1)) — (T i 1))

This gives
d() = —7(m, p, ', 1) + <u,T T e TR T AT S 2 TR TN
— (), s 1) T, () 1) — (s ()
7(

(u
- T(T(/L,u/) ") (s T 1)) — (s 1))
— 7{d(p), o', ") A Ty d(p), 1) — 7, !, d(p”))

Using that u, p/, p” € Z1(A7), we obtain

d(y) = —7(7, pu, 1’ ") +T<MaT oy = T o )y ()
+ 7 ({T)s 1 ") — (T 1) T g (7))
= (T, 1)y () + T, T 1)) — T 1))

We also have
(T = =7 (T s ) 7 Tl ) = 7 il ) (s i )
+ 7)1y = T () 1) A T (7))
which finally gives
d() + 1) —(r) = m(u, 7 1")) — (T (i), 1Y)

so that we have the associativity.

We now prove that every element [u] has an inverse under *,. We set u, = —p and,
for every n > 0,

Hppr = =1 — T ).
We obtain a Cauchy sequence in A. Because A is complete, this sequence has a limit
denoted by p/ which satisfies

pt '+ 7, p) =0

so that [¢/] is the inverse of [u] under *,. We thus have proved that *, endows H;(A")
with a group structure.
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We now prove that ., is abelian. Let p, p/ € A;. We set ¢ := pu(p'), and prove that

() + 1) — () = 7', ) — 7, 1),

We have
d(y) = d(p){p') — pld(y'))
= —7(u) () — ) (') 4+ T (') + pp (7))
= —m(up')) — 7 ') + T ) — (T ()
=T, p) + s )+ (T () + pp' (7))
= —r(up')) — 7, 1) + 75 1)
=T, p) + pps ) + ' (T))
and

We then have

d() + (W) — (1) = 7(u', ) — 7, 1)
which proves that

[+ 7, 1) = [+ 7 )]

The operation *, is then commutative.

The lemma is proved. O
Theorem 2.4.15. Let A be a complete brace algebra and 7 € MC(A). Then
To(MCe(A), T) ~ (H1 (A7), %,,0).
Proof. By Lemma 2.4.13, we have a bijection
[ Zi(AT) — MCy(A),.

We consider its composite f : Z;(A7) — m(MC4(A),7) with the projection of

MCy(A); onto ma(MC4(A), 7). We show that f is compatible with the equivalence
relation on H;(A7) given by Lemma 2.4.14. Let p, ' € Zy(A7) be such that there
exists ¢ € Ag with pu — p/ = d-(10). Namely,

d() +7() = (1) = p— "
By Corollary 2.3.8, Corollary 2.3.9 and Lemma 2.4.12, we have
—7®(0V+1"+2") - p®123" — 1/ ® 023" + ¢ ® 0123" € MC(A ® TN*(A?)),
which shows that f(x) = f(;/). We thus have a well defined map
fiH (A7) — my(MCl(A), 7).

We prove that f preserves the group structures. Let ju, y/ € Z;(A7). Recall that

flp) = -7 0V +1V +2Y) — p®012";
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f)=-12 0" +1V+2Y) - i/ ®012".
We search for p” € Ay and ¢ € A, such that

w::_T®(Qv+lv+zv+§V)_ul®m\/
— 1" ®023 — 1 ® 013" 4+ ® 0123¥ € MC(A® LN*(A?)).

dw) = —d(1) ® (0" + 1" + 2" +3") —d(y') ® 123" — d(p") ® 023" — d(p) ® 013"
+(d() — p" + p+ ') ® 0123Y.
By Corollary 2.3.8, we also have
wlwh = —7(r) ® (0" + 17 +2"+3") — (7(u) + /(1)) ® 123" — (7(u") + p" (7)) @ 023"
—(T{u) + p(r)) ® 013" + (7(sb) — ¥(r)) ® 0123".
By Corollary 2.3.9, we have

w{wle = 7{(u, 1’y ® 0123".

Finally, for every p > 2 and by Lemma 2.4.11,

wlwhy, = —7® (0" +1"+2"+3"){—p/ ®123¥ — 1" ®023Y — p® 013¥ + ¢ ® 0123" ],
= D> T®0 +17+2" +3") - ©123'
s+t=p

—p" ® 023" — 1 ®013Y,9 @ 0123" |14

Since p > 2, for every s,t > 0 such that s +¢ = p, we have 2s + 3t > p + 2. From
Lemma 2.4.12, we deduce w{wl}, = 0. We then see that w is a Maurer-Cartan element
if and only if

dr(¥) — 0"+ p+ p () = 0.
If we set ¢ =0 and p”" = p+ ' + 7(u, p'), this shows that
F)] - ()] = [=7 @ (0" + 1Y +27) — (u+ 4/ + 7(u, 1)) ® 012"]

in m(MC4(A), 7). We thus have proved

FuD) - F() = Fl] 7 [1])-

The morphism f is surjective, since ]7 is bijective. It is also injective. Indeed, the
equation f([u]) = 0 is equivalent to [u] = 0, according to the beginning of the proof
of this theorem with z/ = 0. The map f is thus an isomorphism, which proves the
theorem. O

Computation of 7,(MC.(A), ) for n > 3

We finally compute the groups m,(MC.(A), ) for every n > 3.
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Theorem 2.4.16. Let A be a complete brace algebra and T € MC(A). Then, for all
n > 3, we have an isomorphism of groups

Tni1(MCo(A), 7) ~ H, (A7).

Proof. By Lemma 2.4.13, we have a bijection f : Z, (A7) — MC,,11(A),. Consider
its composite f : Z,,(A7) — m,41(MC4(A), 7) with the projection of MC,,;1(A), onto

Tnt1(MCo(A), 7). We show that f is a morphism of groups. Let p, ' € Z,(A7). We
set

w:—7'®< EV>—M®O--~(n+1)v;
k=0

Ww=-7® (ZEV> — 0/ ®0---(n+1)".

0

k=
We compute [w]+ [w'] in 7,41 (MC4(A), 7). This is equivalent to searching p”" € Z,, (A7)
and ¢ € A, such that

n+2
moro (3] ue L n e (11 )”
k=0
—H @03 (1 +2) Y90 (14+2) € MEAB TN (A™).

We make precise the Maurer-Cartan condition on . We first compute d(&). Note that
we have, for every 0 < k < n + 2,

dk¥) =Y ki'— > ik’

k<j<n+2 0<i<k

which implies
n+2

D d(kY)=0

by a variable substitution. We then have

n+2

d(€) = —d(1) ® <ZEV) —d(p)@1---(n+2)Y —d(p") ®02---(n+2)"

—d()®013-+-(n+2)" + (d@) +p" —p— ) @0 (n+2)".

We now compute £{£]};. By Corollary 2.3.8, we have

n+2

el =—7(n) @ (ZEV> — () = (=)"u(r)) @1 (n+2)"
k=0
— (") = (=1)"u" (1)) ® 02--- (n +2)"

— (T{y = (=) (7)) ® 013+ -+ (n + 2)"
+(T(@) = (—D)"Y(r)) ®0- - (n+2)".
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We now show that £{{[}, = 0 for every p > 2. By Lemma 2.4.11, we have

n+2
5{[5]}1,2— Z T <ZEV> {Iu@l(n+2)v_p/’®02(n+2)v
k=0

s+t=p

— W ®013---(n+2)", ¢ ®0---(n+2)"],
—1—2 (p®1-- n—|—2) — ' ®02--(n+2) =/ @013 (n +2))u@1---(n+2)"

)" ®02---(n+2) =@ @013 (n+2)" Y R0---(n+2)" s
+ Y R0+ {p@l - (n+2)Y — ' ®02: - (n+2)"

s+t=p

— @013 (n+2), @0 (n+2)" s

Since n > 3 and p > 2, we can apply Lemma 2.4.12 to obtain {{{]}, = 0. At the end,
since p, ', h € Z,(A7), we have

d(€) + Y Eldy = (W) + () = (=) (r) —p— '+ ") ©0--- (n +2)".

p>1

If we set ¢/ == p+p' € Z,(A7) and ¢ := 0, we then obtain that £ € MC(A ®
YN*(A™?)). We thus have proved that

W + W] =

—T®<n2kv> (p+p)®0---(n+1)"

which gives f(u+ 1) = f(u) + f(/). Now, because f is a bijection, we only need to
prove that the kernel of f is exactly given by d(A,41). Let p € Z,(A7) and ¢ € A, 4.
By the previous computations, we see that the equation

d(¥) +7(¥) — (=1)" (1) =

is equivalent to the assumption

n+2
—T (ZEV> _'u(g)w\/_{_lp@wv EMC(A@ZN*(ATL+2>)7

k=0

which shows that f(,u) = 0 if and only if u = d.(¢)) for some 1) € A, ;. We thus have
an isomorphism

~

[ Hy (A7) = T (MCy(A), 7).
UJ

2.4.3 Remarks: interpretation of the low dimensional twisting
coderivations

In this subsection, we give an interpretation of the differentials 9°, 0%, 9? and 9?
computed in Lemma 2.3.6 and Corollary 2.3.9. This interpretation will be obtained
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by the study of the first simplices associated to the Maurer-Cartan simplicial set of
Hom(A~'AsY, Endy) for some A € dgMody.

Recall that for every non-symmetric cooperad C and non-symmetric operad P
such that C(0) = P(0) = 0, the sequence Hom(C,P) is endowed with the structure
of an operad such that, for every f € Hom(C,P)(k),g1 € Hom(C,P)(i1),...,gr €
Hom(C, P) (i) with n =iy + - - - + iy, the composition y(f ® g1 ® - - - ® gx) is given by
the composite

C(n) —2— CoC(n) — C(k) ®C(i) @ --- @ Cliy)
lf®g1®-~®gk

Pk) ® P(iy) @ - @ Pliy) — PoP(n) —— P(n)

From [GV95, Proposition 1], we deduce that P, ., Hom(C(n),P(n)) is endowed with
the structure of a brace algebra. The braces are given by

flgn gy = Y AR 000 ©ge- ®id)

1<iy1 < <in<r tn

where f € Hom(C(r),P(r)), 91 € Hom(C(my), P(m1)),..., g, € Hom(C(m,), P(m,)).
We immediatly see that @, ., Hom(C(n), P(n)) is a sub brace algebra of

@,-, Hom(C(n), P(n)). Since [],s, Hom(C(n),P(n)) is the completion of

@, -, Hom(C(n),P(n)) under the filtration defined by

F,(@ Hom(C(n), P(n))) := & Hom(C(n),P(n)),

n>2 n>p+1

we have that the above brace algebra structure on €p,,-, Hom(C(n), P(n)) induces a
complete brace algebra structure on [], ., Hom(C(n), P(n)).

We now consider the non-symmetric operad As such that As(0) = 0 and As(n) =K
for every n > 1 with trivial operadic compositions. Since As is self-dual for Koszul
duality (see for instance [LV12, Proposition 9.1.9]), the operad As,, = B°(A™'As")
encodes associative algebras up to homotopy. We apply the above analysis with C =
At AsY and P = End, for some A € dgMody in order to study morphisms from As,
to End 4, or equivalently associative up to homotopy algebra structures on A. Note
that we have an isomorphism of operads

Hom(A ' AsY,End,) ~ Ends4.

We set
B(A) = @P(ZA)®" ; Bsy(A) = P(2A)®"

n>1 n>2

so that B(A) = YA @ Bsy(A). Let d be the differential of B(A) obtained from the
internal differential of A by the Leibniz rule. Recall that B(A) is a coalgebra with as
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coproduct
n—1
A ® - @a,) =Y (1@ @ar) ® (a1 @ @ ay)
k=1
for every n > 2 and aq,...,a, € X A. The above isomorphism of operads provides a

complete brace algebra structure on Hom(Bx5(A), ¥ A) ~ [],-, Endsa(n). Note that

we have the isomorphism Hom(B(A),XA) ~ Hom(XA,¥A) & Hom(B>2(A),XA). In
the following, we denote by 1 € Hom (XA, ¥ A) the identity morphism so that we have

a natural inclusion K1 @ Hom(B>2(A),¥A) C Hom(B(A),XA).

Proposition 2.4.17. Giving a Maurer-Cartan element ¢ € MC(Hom(B>2(A), X A))
is equivalent to giving a coderivation of coalgebra of the form d + 0, on_B(A), where
Op s the morphism obtained from ¢ by the Leibniz rule in the coalgebra B(A).

Proof. Let ¢ € Hom(Bs2(A),XA) be a degree —1 morphism. Then (d + 9;)? = 0 if
and only if d(¢) + ¢0s = 0. By definition of d,, we have, for every ay,...,a, € XA,

a¢(a1®"'®dn):Zziéh®"'®6Li—1®¢(ai®"'®ai+j)®ai+j+1®"'®am

which gives ¢0, = ¢(¢). We thus have obtained that d+ 0, is a derivation of coalgebra

if and only if ¢ € MC(Hom(B(A),XA)). O

Since giving a morphism of operads As,, — End4 is equivalent to giving a Maurer-
Cartan element in Hom(B>2(A),>A), we have the following classical definition.

Definition 2.4.18. An associative algebra up to homotopy is a pair (A, ¢) where A
is a dg K-module and ¢ € MC(Hom(B>3(A), £A)).

~ For every ¢ € MC(Hom(Bx5(A),¥A)), we denote by B(A, ¢) the dg K-module
B(A) endowed with the coderivation d + 0.

Definition 2.4.19. Let (A1, ¢1) and (Ag, ¢2) be two associative algebras up to ho-
motopy. An oo-morphism f : (A1, ¢1) — (As, ¢2) is a morphism of coalgebras f :
B(A, ¢1) — B(A, ¢o) which commutes with the coderivations.

In the following, we consider the category of associative algebras up to homotopy
with set morphisms the co-morphisms.

Remark 2.4.20. Note that since B(Ay) is cofree, giving a morphism of coalgebras
B(A;) — B(Ay) is equivalent to giving a morphism B(A;) — Y As.

Proposition 2.4.21. Let ¢, ¢1 € MC(HOIH(?(A), Y A)). Then giving
—go ® 0" — 1 @ 1" — ¢y ® 01" € MCy(Hom(Bx5(A), L A))
is equivalent to giving a morphism of coalgebras

(I)()l . E(A, ¢1) — E(A, ¢0)

which is the identity on LA C B(A).
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P7“00f._Let W = :¢0 ®Qv — ¢1 ®lv — ¢01 ®m\/ € HOHl(BZQ(A), EA) X EN*(AI) Let
®g1 : B(A) — B(A) be the unique morphism of coalgebras such that its composite
with the projection mx4 : B(A) — YA is 1 4+ ¢o1. We characterize the equation

(d + O ) Por = Por(d + 05, ).
Since B(A) is cofree, this identity is equivalent to
WZA(d + 8¢0)<I>01 = WEA(I)ol(d + 8¢1),

and then to
d(po1) = ¢1 + 0105, — PoPor.

We precisely have ¢g105, = ¢o1(¢1) and ¢poPo1 = ¢ © (14 ¢o1) by definition of 9, and
®y;. We thus have obtained that ®¢; commutes with the differentials if and only if

d(po1) = @1 + Go1(P1) — do © (1 + ¢o1).

By Lemma 2.4.7, this identity is equivalent to ask w € MC;(Hom(Bs2(A), X A)), which
proves the proposition. ]

We now characterize elements of MCs(Hom(B>2(A), X A)). First, note that for
every associative algebra F, every ¢ € MC(Hom(Bx2(A),¥A)) induces an element in
MC(Hom(B>3(A® E),L(A® E))), which we still denote by ¢, and which is defined
by applying ¢ on the left, and the algebra structure of E on the right. In particular,
for every morphism of associative algebras f : E — E’, we have an oo-morphism
ide f: (AR E,¢) — (AR E', ¢).

Next, recall that, for every n > 0, the dg K-module N*(A™) is endowed with the
structure of an associative algebra. This associative algebra structure is obtained by the
dualization of the coassociative coalgebra structure on N,(A™) given by the Alexander-
Whitney diagonal AW : N,(A™) — N,(A") ® N,(A™) which is the operation given
by the permutation (12) € £(2),. Explicitly, we have

d

AW(%"‘%Z):ZCLO"'%@)%“'CM,
k=0

forevery 0 < apg < --- < ag <n.

Proposition 2.4.22. Giving a Maurer-Cartan element in MCy(Hom(B>2(A), X A)) is
equivalent to giving Maurer-Cartan elements ¢o, ¢1, p2 € MC(Hom(Bx5(A),XA)) and
a diagram of the form

(Au ¢1)
(1912 ﬂ ‘I)Ol
Po12
(Aa ¢2) oo > (A7 Qb())

in the category of As-algebras, where ®g1z 1 (A, o) — (AQN*(AY), ¢y) is a homotopy
from @01@12 to (1)02.
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Proof. We consider

wi=—¢oR0" - @1V — @2 — o1 @ 01" — g2 ® 02" — h12 ® 02" — hg12 ® 012",

We characterize the Maurer-Cartan condition on w. By definition of the 'APL-
algebra structure on YHom(Bso(A), L A) ® N*(A?), and by Corollary 2.3.9, looking at
the vertices of d(w) + )+ w{w], gives the Maurer-Cartan condition on ¢y, ¢1, ¢ €
Hom(Bs(A), X A). Looking at the components given by 01¥,02" and 12" also give the
Maurer-Cartan condition on the elements

—pp @0 — 1 ® 1Y — o1 ® 017,

—dp ® 0" — P ® 1Y — hpe ® 017,
—1®0" — @1 — 1o @017,

In particular, by Proposition 2.4.21, such datas are equivalent to giving three oo-
morphisms ®g; : (A, ¢1) — (A, do), Poz : (A, ¢2) — (A, dp) and P15 : (A, o) —
(A, ¢1) which reduce to the identity on X A. We now analyze the 012" component
of d(w) + >, <, w{wl,. By Corollary 2.3.9, the Maurer-Cartan condition on w gives,
when looking at the 012" component,

d(po12) — P01 @12+ Po2 +Po12{(¢2) + Z Go(Po2; - - -, Poz, Po12, Po1@P12, - ., o1 @1z) = 0.

.. VvV
1,720 i 7

Now let @15 : B(A) — B(A ® N*(A')) be the unique morphism of coalgebras such
that its composite with the projection on ¥4 ® N*(Al) is

(14 do2) ® 0" + do12 ® 01" + (1 + P01 @p12) ® 17
We characterize the equation
Tsaen+(a1)(d + Oy ) Po12 = Tragn+(a1)Por2(d + 0p,).
On one hand, we have

T aen+(an)(d + 0gy)Por2 = (dsa + dooz + ¢ © (1 + ¢o2)) ©® 07
+ (dsa + dpo1©d12 + ¢o © (1 + ¢p1@¢12)) ® 1Y
+ (ddors — b0 @12 + Poa + >, dol@on, - - -, Goz, Bo12, Y01 @Pna, - -, b1 @ha)) @ 01,
N 7 N o

.. Vv
4,720 i j

On the other hand, we have

Traen+(anLo12(d + 0y,) = (dsa + do2d + ¢2 + o2(p2)) ® 07
+ (dsa + ¢01@¢12d + (P01@P12) (o)) ® 17
— (¢o12d + Po12(¢2)) ® 01",

which proves the proposition. O
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We now characterize MCs(Hom(B>5(A),XA)). We first show how to compose
homotopies from (A, @) to (A ®@ N*(A),¢) for some Maurer-Cartan elements ¢, ¢ €
MC(Hom(Bsa(A),XA)). Let f,g,h: (A, ¢) — (A, ¢'). Let H : (4,9) — (A®
N*(AY), ¢') be a homotopy from f to g, and Hy : (A,¢) — (A ®@ N*(A'),¢) be a
homotopy from g to h. We consider the pullback

N*(A1) x N*(A1) Ty N*(A)

K
|
| g
|
T2 : do ?
|
+

N*(A1) - s K

where we identify N*(A%) with K. Explicitly, we have N*(A!) x N*(A!) = (N*(A!) x
K
N*(AY)/((1Y,0) ~ (0,0Y)). One can see that the algebra structure of N*(A!)x N*(Al)
preserves the equivalence relation ~ so that A ® (N*(A!) x N*(A!)) is a path object
K

for A in the category of Ay -algebras. We thus obtain a homotopy H := Hy x H :
(A, ¢) = (A® (N*(A) X N*(AY)),¢') from f to h.

Now let G1,Gy : (A, ¢) = (A® (N*(A) x N*(A')), ¢') be two homotopies from f
K

to h obtained as above. In the next proposition, we use a particular way to compose
(1 with Gy. This composition is defined as follows. Let NX((J?) = N*(Al) @ N*(Al)
and N#(00%) = Ni(T?)/(K- 01V ® 01Y). We consider the morphisms of algebras
[y, Ty N5 (0O?) — N* (A1) x N*(A') defined by

Do NOP) — NY(AD) x N*(AY) Lo NOOP) — N*(AD)
0"®0" +— (0¥,0) 0"®0" +— (0¥,0)
Qv ® lv — (lva O) and lv & QV — (lva O)
"ol w— (0,1Y) 1"el" +— (0,1Y)
0"®01Y (01¥,0) 01"®0" (01¥,0)
01Ve1’ —  (0,00Y) Vool —  (0,01Y)

From a geometrical point of view, the morphism I'y allows us to see the product
N*(A') x N*(A') as the top left corner of NZ((J?), while I'y allows us to see it at
K

the bottom right corner of NZ((J?). In particular, one can check that NZ(00J?) is the
pullback of the diagram

Since G and G are homotopies from f to h, their projection on YA ® K - (0¥, 0)
(respectively YA®K-(0,1Y)) agree and are given by h (respectively f). Therefore, the
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morphisms G and Gs induce an oo-morphism G10Gs : (A, ¢) — (A ® N5(00?), ¢)
given by the following pullback square diagram:

G1
(4, 9) MW@U x N*(AY), ¢')

K
|
x ld®r2l l

(A® (N*(AT) x N*(AD), ¢) — (A® (K- (0%,0) & K- (0,17)),¢)

Proposition 2.4.23. Giving a Maurer-Cartan element in Hom(Bsy(A), ZA)QLN*(A?)
is equivalent to giving ¢o, 1, P2, o3 € MC(Hom(B>2(A), X A)), two homotopy diagrams
of the form

(A, o) —2 5 (A, ¢n) A, é1)

\@123 / CDO%
Do3 P13 D01 P01
/ ®013 P23
03

(A, ¢3) — (A, o)

and a lifting diagram

(A ® NE(D2)7 ¢0)

I®o123 /,//7 l ,

(4,03) g, (A ® N30D2), o)

where we denote by Hy, Hy : (A, ¢3) — (A (N*(A') x N*(A1)), ¢) the homotopies
K
from @g1P19Po3 to o3 given by the homotopy diagrams.

Proof. Let

wi=—¢ 0" —¢1 1" — ¢ ®2" — 3 ® 3"
— o1 @ 01" — g2 ® 02" — P12 ® 12" — o3 ® 03" — 13 ® 13" — b3 ® 23"
— G012 ® 0127 — o135 ® 013" — 3 ® 023" — 193 @ 123" — Pp123 ® 01237

be an element of Hom(Bsy(A),XA) @ LN*(A?%). By Proposition 2.4.22, the Maurer-
Cartan condition on the four faces of w is precisely equivalent to giving the first two
diagrams given in the assertion of the proposition, since the I'AP L .-algebra structure
of Hom(Bs2(A), X A) ® N*(A?) is compatible with the simplicial structures. From now
on, we suppose that dyw, djw, dew and dsw are elements of MCso(Hom(B>2(A), X A)).
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Then the only possibly non-zero component of d(w) + 3, -, w{w], is the 0123" com-
ponent. By Corollary 2.3.9, this component is 0 if and only if we have the identity

d(Po123) + G023 — D123 + Po13 — Po12 — Po123(P3)
+ Z Po12(P23; - - -, P23) — Z Go1 (P13, - -4 , D13, D123, ¢12@¢237 oy 012@093)

~
k>1 k 4,70 j

+ Z oo ¢03, ooy P03, G023, Po2@¢23, Po12 @ (14 Pa3), Po1@P12@Pa3, . . . , Po1@P12@Pa3)
d 3 ¢

4,5,k>0 : j ;n,

+ ) oo ¢03,--~,¢037¢013 010913, - .., 9010P13, P123, P01©P120¢23, - . . , P01 ©P12©P23)

~~ ~~
k

i J

+ Z ®o ¢03,--->¢03,¢013,¢01@¢13:---,¢01@¢1§,

~
,7,k,l,m>0 z' j

¢01 <¢127 ERR ¢127 ¢1237 ¢12@¢237 s 7¢12@¢23>7 ¢01©¢12@¢237 LRI ¢01@¢12@¢23>
N ) N RN o

~~ ~~
m

k l

+ Z oo (,1503, o5 003, Po123, ¢01@¢12@¢23> ceey ¢01@¢12@¢2§> =0

~
4,720 j

,5,m>0

We let ®gia3 : B(A) — B(A ® NZ(0?)) to be the morphism of coalgebras whose
composite with the projection on LA @ N ((I?) is

(1+ ¢o3) ®0" ®0"
+ (1 +do1) @ (14 ¢13) ®0" @17
+ (14 ¢02) @ (14 ¢o3) @1 ® 07
(14 ¢01) @ (1 + ¢12) © (1 +¢po3) @ 1Y @ 1
+ o2 ® 01V ® 0¥
+ ¢o13 ® 0¥ ® 017
+ 012 ® (1 + ¢ho3) ® 1V @ 01"

+ | D123 + Z Go1(P12; - - -, P12, D123, D120 P23, - - ., P12@¢a3) | ® 01V ® 17
M—/ . )

. . Vv
,j>0 3 i

+ ¢o123 ® 01V ® 01",

We check that w is a Maurer-Cartan element if and only if ®4193 commutes with the
differentials. The latter condition is expressed by the identity

7T2A®Ng](52)q)0123(<ll + 8¢3) - 7TEA®N5(DQ)(d + 8450)(1)0123) = 0.

Since the morphisms ®g3, P P13, PpaPo3 and Py P1oPo3 commute with the differentials,
the components given by 0¥ ® 0Y,0¥ ® 1V,1¥ ® 0¥ and 1V ® 1V are indeed 0. Since
D93 and P13 commute with the differentials, the components given by 01Y ® 0¥ and
0¥ ® 01Y are also 0. We now look at the component given by 1Y ® 01Y. Since the
algebra structure of N#((J?) is compatible with its underlying simplicial structure, it
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is equivalent to check that the element
(1 4+ do2@¢a3) ® 0 + 12 © (1 + ha3) ® 01" + (1 + do1©@¢12@¢93) @ 1"

is a Maurer-Cartan element in Hom(Bs(A), A) ® N*(A'). From Proposition 2.4.22,
one can see that it is equivalent to check that the composite ®g12®o3 : (B(A), ¢p3) —
(B(A® N*(A'), ¢p) commutes with the differentials, which is the case since ®g;5 and
®y3 commute with the differentials. Analogously, we 01Y ® 1V is also 0, since the com-
posite g P23 commutes with the differentials.

We now look at the 01Y ® 01" component. The composite Ts Ao N (02) Poi23(d + Og,)
gives

(o123d + Po123(¢3)) ® 01¥ ® 017

as 01¥ ® 01Y component. We now compute the 01 ® 01" component given by the
composite WEA®NE‘(D2)(CZ + 0y ) Po123. Computing Te ANy @2)dPo123 gives the terms

(dpo12s — Po13 + Po2s + o012 © (1 + ¢Pa3)
— P13 — Z o1 {12, - - -, P12, D123, P12@Pa3, . . ., P12@¢23)) @ 01¥ @ 01".
—_ S

.. Vv
4,720 i j

We now compute 7TZA®NE|(D2)8¢0(I)0123- Note that the only way to write 01Y ® 01 as a
product in N*(Al) ® N*(Al) are given by one of the three following products:

(0¥ ®0Y)- (0¥ ®0Y)- (01" @0%)- (1¥ ©0Y)- (1Y ©0Y)- (1Y ®01%)- (1V @1")-*-(1V & 1");

i

(0¥®0Y) (0¥ ®0Y) - (0V ®01Y) - (0" ®1¥)-7 (0¥ ® 1Y) (01Y ®1¥)- (¥ ® 1Y) *(1V ®1Y);

0V ®0%)-4-(0" ®0Y) - (01 ®01Y) - (1¥ ® 1Y) -(1¥ @ 1).

for every 1, 7,k > 0. These type of products give respectively
- Z b0 ¢03> .o+, P03, D023, P02©@¢23, - - -, P02©@¢a3, Po12 © (1 + Pa3),

-~

$01©0120¢3, . . ., ¢01@¢12@¢2§> ®01Y ®01Y;

-

k
Z b0 ¢03, .oy D03, D013, ¢01@¢13, e >¢01@¢1§,
i,5,k,l,m>0 i 77
D123+ B01(P12, - - - P12, P123, P12@Pa3, - . ., P120P23), Po1@P12@Pas, - . . , Po1©P12@P23) ®01YROLY;
— Y ! b1 ’

Z b0 ¢03, e D03, P0123, ¢01@¢12@¢23, e 7¢01@¢12@¢2§> ® 01 ®01Y,

TV
4,720 i j

as 01Y ® 01Y. We thus have obtained that ®y;23 commutes with the differentials if and
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only if w is a Maurer-Cartan element, which proves the lemma. ]

2.4.4 A Goldman-Millson theorem

Our next goal is to prove an extension of the classical Goldman-Millson theorem
for Lie-algebras (see [GMS88, §2.4]). The proof of our analogue will be adapted from
the proof given in [MR23b, §6] in the setting of associative algebras up to homotopy.

We first prove that the category TAPL,, admits finite products.

Lemma 2.4.24. Let (V4,Qv,), (V2,Qv,) € TAPLs. Then there exists a TAPLo-
algebra structure on Vi x V, such that the morphisms my, : Vi x Vo — Vi and my, :
Vi x Vo — Vi are strict morphisms of AP L. -algebras.

Moreover, for every ¢1 : W ~> Vi and ¢o : W ~~ Vs, there exists a unique co-morphism

denoted by ¢1 X ¢g : W~ Vi X Va such that wy, (¢1 X ¢2) = &1 and my, (o1 X ¢2) = ¢o.

Proof. We let Qv, xy, be the coderivation produced by the morphism

x QY.
Vv, - TPerm®(V4 x V3) — TPerm®(V;) x T'Perm* (VQ) R TN

Recall that the coderivation Qv xy;, is obtained from QY. .y, by Qvixv, = \Tll(Q?/leQ) +
\IJQ(QVMVQ) (see the proof of Proposition 2.2.15). We check that Qv,xv,Qvix1, = 0.
By definition of ¥y, we have the following commutative diagram:

(Vi x Vo) @ I'(Vy x V3)

/ \QW}VQ

M1eT()) x (VaeT'(Va)) (Vi x Vo) @ (Vi x Va) -
%(Q%l)x@l(cz%)l lQVWQ
(Vi @ T(1) x (Va @ T(V3)) o P Vix V

1 Va

We also have the commutative diagram, by definition of Uy

(Vi x Vo) @ T(Vy x Va)

M el(h)) x (V2@ T(V2)) (i xVa) @ P(V1 x V3) -
%(Q(e/l)x%(@%)l lelva
M@ l(h)) x (Va@T(V2)) e » Vix Vs
QV1><QV2

Finally, we have proved that QY. ., ¥(QY .,) fits in the following commutative dia-
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gram

(Vi x Vo) @ I'(Vy x V3)

/ \QW2

(V1®F(V1)) (Va @ (Vy)) (Vi x Vo) @ D(V4 x Va)
)} T(QY, )l \0 lQ(‘)/IXVQ
<v1®r<v1>> (Vo & (V%)) v

0 0
Vi XQVQ

which proves that (Vi x Va, Qv,xv,) € TAPL,. Now let ¢ : W ~» Vi and ¢g : W~ V4
be two oo-morphisms. We define ¢ : W ~ Vi x V, by ¢V = ¢{ x ¢3. We prove that this
gives an oo-morphism i.e. ¢°Q = (@Y, x QY,)¢. This can be proved with the following

commutative diagram:

['Perm‘(W) > I'Perm®(1V)

¢l lqs?wg :
0 QO

X
TPerm“(V; x Va) % [Perm®(V;) x [Perm®(Vs) ——2 V; x Vy
Q?/:[XVQ

The identities 7y, (¢1 X ¢2) = ¢1 and 7y, (P1 X ¢2) = @9 follow by immediate computa-
tions. [

Remark 2.4.25. By an immediate check, the above definitions extend to the category
FA/PTOO of complete TANP L -algebras. Explicitly, if (V1,Qv,) and (Va, Qyv,) are com-
plete with respect to some filtrations, then (Vi x Vi, Qv,xv,) is also complete with the
filtration

E,(Vi x Vo) = FoVi X By V.

In this setting, we deduce immediately from the definition of Q?/IX% that we have a
bijection

MC(Vy x Va) = MC(V1) x MC(Vs).
We give an analogue of [MR23b, Proposition 5.2].

Lemma 2.4.26. Let A, B € dgModx be such that A ® SN*(A®) and B ® NN*(A®)
are endowed wzth the structure of simplicial FAPE -algebras. Let ©:A— Bbea

morphism in dgModK such that © ® id s a strict morphism of FAPE -algebras for
every n > 0. Suppose that © is an acyclic fibration of dg K-modules.
Then the map

O®id: MC(A® XN*(A®)) — MC(B ® XN*(A*))
18 a weak equivalence of simplicial sets.

Proof. Since the two simplicial sets MC(A ® XN*(A®)) and MC(B ® EN*(A*)) are
Kan complexes by Theorem 2.4.5, it suffices to show that © ® id induces a bijection
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on the sets of connected components and an isomorphism on every homotopy groups.
Let 7: B— A and h: A — A be such that

Or =1id; id— 10 = dh+ hd.

We endow Ker(©) with the brace algebra structure defined by a(by,...,b.) = 0 for
every r > 1 and a,by,...,b, € Ker(©). Our first goal is to define a morphism V¥,
A® XN*(A®) ~ Ker(©) ® XN*(A®) of simplicial Tmoo—algebras. For every n > 0,
let (¥,,)) = (id — 7©) ® id. We set, for every k # 0,

(Tn)i = (Vn)o(h ® id)Qy,

where we denote by () the coderivation on I'Perm®(A®QYXN*(A™)) given by the TAPL.-
algebra structure on A ® YN*(A"). We check that ¥,, : A ® XN*(A") ~» Ker(0) ®
EN*(A™):

d(W,)y = d(,)5(h @ id)Q;
(‘I’n)od(h ®id)Qy,
= (V)o@ ( n)o(h ® id)dQy
(

0,)9Q% + Z(\yn (h ®id)QQ;,

= (\Ifn>8Q2+Z(\IJ
i=1
k
= Z(‘Ijn)? 27
=0

which proves that U,, : A ® XN*(A") ~ Ker(©) ® XN*(A"). Since V¥, is defined in
terms of morphisms which are compatible with the simplicial structure, the morphism
¥, is a morphism of simplicial I" A/Pfoo—algebras. Consider now, for every n > 0, the
Fmoo-algebra structure on (B x Ker(0)) ® XN*(A®) given by the isomorphism

(B x Ker(0)) @ XN*(A*) ~ (B® XN*(A®)) x (Ker(0) @ XN*(A®)).

Let g, = (O ®id) X ¥, : A® IN*(A") ~ (B x Ker(0)) @ XN*(A™). Then g, is a
morphism of simplicial FA/PTOO—algebras. We also have that MC(g,) is an isomorphism
of simplicial sets. Indeed, we have that (g, )] is an isomorphism of simplicial sets, with as
inverse (b, k) @z — (7(b)+k)®zx, for every b € B, k € Ker(0) and z € XN*(A®). By
looking at the Maurer-Cartan spaces degree wise, we obtain the following commutative
diagram:

MC(g.)

MC(A @ SN*(A®)) 4 » MC((B x Ker(0)) ® SN*(A*))

MC(@@id)k kfv

MC(B ® EN*(A®)) «— MC(B ® EN*(A*®)) x MC(Ker(©) ® EN*(A*))

It is then sufficient to prove that the projection MC(B ® XN*(A®)) x MC(Ker(0) ®
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EN*(A®)) — MC(B®XN*(A®)) is a weak equivalence of simplicial sets, which is true
because MC(Ker(0) @ EN*(A®)) = MC.(Ker(0)), and this simplicial set has trivial
mo and homotopy groups according to the computations of the connected components
and the homotopy groups made in §2.4.2. We then have the result. [

The next lemma is an analogue of [MR23b, Proposition 5.5].

Lemma 2.4.27. Let A, B,C be FA/?ioo—algebms. Let © : A~ C and ® : B ~~ C
be two oo-morphisms of TAPL..-algebras. We suppose that ® is strict, and that )

is surjective. Then there exists a FA/PTOO—algebm structure on A x Ker(®) and H :
A x Ker(®)) ~ A x B such that the following diagram is a pullback square diagram in

TAPL,. :

A x Ker(®9) ----2%_s B
- s
A s > C'

Proof. We follow the proof of [MR23b, Proposition 5.5]. Let ¢ : €' — B be a
morphism of K-modules such that ®jo = id. We define two morphisms J, Hf :
Ax B — Ax Bby J)(a,b) = (a,b—00)(a)) and H)(a,b) = (a,c0](a) +b). We set

Hg = (0,0@27@1);

JQ = (0, —0@27@1),

An immediate computation gives HJ = JH = id. Therefore, if we denote by @ the
'APL.-algebra structure on A x B, then @ = JQH is a degree —1 coderivation on
['Perm®(A x B). We note that @ preserves I'Perm®(A x Ker(®9)) and the filtrations, so

that A x Ker(®)) is a T'APL-algebra such that I : A x Ker(®)) ~ A x B. Consider
now a diagram of oo-morphisms:
D
]
A

Then, we have the commutative diagram

W

B

_
‘/¢ |
———C

D L2

i‘m

A x Ker(99) — =225 B

o
Q
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which proves the result. ]
We now prove Theorem F.

Theorem 2.4.28. Let © : A — B be a morphism of complete brace algebras such
that © is a weak equivalence in dgModg. Then MCo(0O) : MCo(A) —> MCo(B) is a
weak equivalence.

Before giving the proof, note that if B is a complete brace algebra, and if we set
B! = B® N*(A!), then we have the following decomposition of the diagonal map in

the category of FA/PTOO—algebras

A
e T —
* n 1 * n * n
B®EN*(A") 5 BT @ IN*(A") —4 (B x B) ® EN*(A")

for every n > 0. This decomposition comes from Proposition 2.1.33 with P = ABrace
and R = B ® YN*(A"). The map so : B — B! is given by the simplicial map s :
N*(A%) — N*(A') and the maps dy,d; : B! — B are given by dy,d; : N*(A') —
N*(AY). In particular, the morphisms sg, dy and d; induce strict morphisms of FA/Pfoo—
algebras, since the action of € on N*(A™) is compatible with its underlying simplicial
structure.

Proof. Lemma 2.4.26 proves the theorem in the case of an acyclic fibration ©. Consider
now the general case. Since dy ® id : B! @ XN*(A") — B ® YN*(A") is a strict
morphism and surjective, we can apply Lemma 2.4.27:

(80@)®id

v, (ﬂ—Ker(dO)(g)id)Hn

A@ SN (A") -2 (A x Ker(dy)) ® SN*(A™) s Bl @ IN*(A")

-
\ T A®id do®id

S

A® NN (A"

—— y B® SN*(A)

where H,, : (A x Ker(dy)) @ EN*(A") ~ (A x Bl) @ XN*(A") is given by Lemma
2427, and U,, : AQXN*(A") ~ (A x Ker(dyp)) ® EN*(A") is the unique co-morphism
which makes the previous diagram commutative.

We recall the FA/PTOO-algebra structure on (A x Ker(dp)) ® XN*(A"). Let @, be the
coderivation on T'Perm®((A x BY) ® SN*(A")) given by the product

(Ax B')@ EN*(A") ~ (A® EN*(A™)) x (BT @ SN*(A™)).
Consider the morphisms H,, J,, : (Ax BD)@XN*(A") ~ (Ax BI) @ X N*(A") defined in
the proof of Lemma 2.4.27. We note that these morphisms are strict, as the morphism

O®id: AR XN*(A") — B ® LN*(A") is strict, and are defined by

(Ha)o((a,b) ® z) = (a,00(a) +b) @ z;
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(J)o((a,b) ® z) = (a,b — 0O(a)) ® z,

for every a € A,b € B and xz € XN*(A"), and where 0 : B — B! is a splitting of
dy : Bl — B. Then, the FA/PTOO—algebra structure on (A x Ker(dp)) ® EN*(A™) is
given by B

(Qn)p = (Jn)g(@n)y(Hn)}.

We thus see that the FA/PTOO—algebra structures on (A x Ker(dy)) @ EN*(A") for all
n > 0 endow the simplicial set (A x Ker(dy)) ® EN*(A®) with the structure of a strict
simplicial object in I’ A/PTOO. Moreover, the map 74 : A x Ker(dy) — A is an acyclic
fibration, and a simple computation shows that 74 ® id is a strict morphism. By
Lemma 2.4.26, we deduce that MC(7m4 ® id) is a weak equivalence. By the 2 out of 3
axiom in sSet, we also have that MC(W¥,) is a weak equivalence of simplicial sets.

Let h: A x Bl — A x B! be the morphism such that (H,)3 = h ® id. For every
n > 0, we set

P, =dimprh ®id : (A x Ker(dp)) @ XN*(A") — B ® XN*(A")

We show that P, is a strict acyclic fibration. First, for every n > 0, the morphism
P, is strict as it is the composite of strict morphisms. Moreover, we have the identity
O ®1d = ¥V, P,, which shows that P, is acyclic for every n > 0. We now prove that P,
is surjective. For every b € B and z € YN*(A"), we have P,(0,0 20" ®z) =bQz
which proves that P, is surjective for every n > 0. By Lemma 2.4.26, we have that
MC(P,) is a weak equivalence. Finally, since we have © ® id = ¥, P,, it follows that
MC(O ®1id) is also a weak equivalence, which proves the theorem. ]

2.4.5 Comparison with the deformation theory of shifted Lie,.-
algebras

Let Lie,, be an operad which encodes Lie algebras up to homotopy, for instance
Lies = B(A"'Com"). We call a AL, -algebra any algebra over the operad ALies.
These algebras have been widely studied in the literature. Recall (for instance from
[DR15a, §2], or [Berl5| for the non-shifted analogue) that giving a AL.-algebra struc-
ture on a graded K-module V' is equivalent to giving degree —1 brackets

e, — :(V®”)En—>V

n

for every n > 0 such that we have the higher Jacobi relations:

Z Z F[[To01), - s To())s Totkt1)s - - s Ta(m)] = 0

k=1 oeSh(k,n—k)

for every x1,...,x, € V. In particular, the 0-bracket d := [—] is a differential.
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Proposition 2.4.29. There exists an operad morphism Lies, — PreLies, which fits
i the following commutative diagram:

Lieoe —— Prelies

| !

Lie —— Prelie

In particular, every APL-algebra is a AL -algebra with the brackets
(1, ... 2] = Zj:xi{[xl,...,@,...,a:n]}.
i=1

Proof. We have an operad morphism Perm — Com defined by e}’ — 1 for every n >
1 and 1 < i < n. By duzalization, this gives a cooperad morphism Com" — Perm"
defined by 1 —— >"" ()" for every n > 1. Taking the cobar construction then gives
a well-defined morphism Lie,, — PreLie,,. The commutativity of the square comes
from immediate computation. The relation between the AP L -algebra structure and
its induced AL-algebra structure comes from the morphism Com" — Perm”. [

Proposition 2.4.29 implies that every complete AP L -algebra is endowed with the
structure of a complete AL -algebra. For every APL-algebra A, we denote by L(A)
the underlying AL.-algebra structure on A.

From now, we work over a field K with char(K) = 0. Using Theorem 2.3.11, we
can use the deformation theory developed in [Rog23] for AL.-algebras (called L[1]o-
algebras in this reference). Following [Rog23, §5.6], for every Lie algebra L, we set

MC,(L) = MC(LREQ*(A®)),

where Q*(A") denotes the dg associative and commutative algebra of polynomial De
Rham forms on the simplex A", and where we consider, on the right hand-side, the
Maurer-Cartan set of the AL -algebra L ® XQ*(A®) (see [Rog23, §5.4]).

Note that since char(K) = 0, the category of I'(PreLie.,, —)-algebras is equivalent
to the category of PreLie,.-algebras, so that TAPL, = APL.,. The goal of this sub-
section is to prove that, for every complete brace algebra A, the simplicial sets MC,(A)
and MC.(L(A)) are weakly equivalent.

In the following, we distinguish the APL.-algebra structure with the AL.-algebra
structure. More precisely, for every complete AP L -algebra V', we set:

MCAPE= (V) = MC(V) 5 MCHM= (V) = MC(L(V)).
We also set, for every complete brace algebra A,
MCPE=(A) = MCL(A) ; MCE=(A) = MC.(L(A)),

where L(A) is the Lie algebra endowed with the bracket [z, y] = z(y) — (—1)ll¥ly(z).
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Lemma 2.4.30. Let V be a /\/Pﬁ\oo—algebm. Then
MCA= (V) = MCAPF= (V).

Proof. By Proposition 2.4.29, we have, for every zy,...,x, € V,
[z1,...,x Zixk{[xl,...,@,...,xn]}.

Then, the Maurer-Cartan equation
) + Z —x{[:v =0

is equivalent to the equation

*ZLFJ

n>2

which is precisely the Maurer-Cartan equation in complete ALie,-algebras. O

Let A be a complete brace algebra, B a dg commutative and associative algebra,
and E be a E-algebra. Then the tensor products (A®B)®XE and (ARE)RYLB are
endowed with a complete AL -algebra structure. Indeed, the first one is induced by
the composite

ALieqw — ABrace @ & —— (Brace @ Com) ® AE |
H H H

while the second one is induced by the composite

ALieo, —— ABrace ® & —— (Brace ® £) @ ACom .
H H ' H

Lemma 2.4.31. The isomorphism
(ARB)RLE —— (AQE)®XB

which exchanges E& and B is an isomorphism of complete AL, -algebras.
Proof. Straightforward computations. m
We thus obtain the following theorem.

Theorem 2.4.32. Let A be a complete brace algebra. Then there exists a simplicial
set S and a zig-zag of weak equivalences in simplicial sets:

MCIPE=(A) —= 5 SA = MCL=(A) .

A

One major consequence of this theorem is that the homotopy groups that we have
computed are isomorphic to the one’s found in [Ber15] if the field is of characteristic 0.
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Proof. We first remark that, for any n > 0, we have a morphism of complete brace
algebras which is a weak equivalence:

A~ ARQH(AM).
By Theorem 2.4.28, we obtain a weak equivalence
MCLPE= (A) —= MCITE=(ABQ(A™)) = MCYTE= ((ABQ*(A"))REN*(A®)).
We now apply [GJ09, Chapter IV, Proposition 1.9]. Recall that the diagonal of a
bisimplicial set X (see [GJ09, Chapter IV, §1]) is the simplicial set Diag(X) defined

by
Diag(X), = X

for every n > 0. Since we have a point-wise weak equivalence, this extends to the
following weak-equivalence of simplicial sets

MCITE=(A) —== Diag(MC"P=((ARQ(A*))@EN*(A%)))
Similarly, by [DR15b, Theorem 1.1], we have a weak equivalence
Diag(MC>=((A® N*(A®*)) @ BQ*(A®))) «Z— MCM=(A) .

By combining the above weak equivalences with the two previous lemmas, we obtain
the following diagram:

MCAPE=(A) —== Diag(MC P = ((A @ Q*(A®)) @ TN*(A®)))

Diag(MC*>=((A® Q*(A*)) @ TN*(A®))) ’

|=

Diag(MC*=((A® N*(A®)) @ B0 (A*))) +— MCI~(L(A))

which proves the theorem. O

2.5 A mapping space in the category of non-symmetric
operads

In this section, we give an explicit construction of a mapping space Mape,,(5°(C), P)
in the category of non symmetric operads in terms of 'AP L., operations. Explicitly,
we give a construction of a mapping space as the simplicial Maurer-Cartan set associ-
ated to the complete brace algebra Homgeq, (C, P).

In §2.5.1, we make recollections on the construction of the free operad functor and
on the model structure used for operads in this memoir. In this memoir, we use an
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explicit description of the free operad functor in terms of trees with inputs, which we
define in this section.

In §2.5.2, we give an explicit construction of a cosimplicial frame associated to the
cobar construction B¢(C) of a coaugmented non symmetric cooperad as a sequence.

In §2.5.3, we finally prove Theorem G, which gives a description of a mapping space
Mapg,,(B(C), P) in the category of non symmetric operads as the simplicial Maurer-
Cartan set associated to the brace algebra Homgeg, (C,P). This gives a computation
of the connected components and the homotopy groups of Map,,(B°(C), P) by using
Theorem E.

2.5.1 The free operad functor and the model structure on Op

We first recall the definition of the free operad functor and the model structure on
operads. We will mostly follow conventions of [Murll]. Let Seqx be the category of
sequences in dgMody. Recall that we have an obvious model structure on Seqx which
is defined arity wise, using the standard model structure on dgMody.

The model structure on the category of non symmetric operads Op is obtained by
transferring the model structure of Seqy from an adjunction

F:Seqw —— Op:w ,

where w : Op — Seqy is the functor which forgets the operad structure. The left ad-
joint F : Seqy — Op is the free operad functor, for which we recall the construction.

We define the notion of tree with inputs, which is analogue to the notion of ” planted
planar tree with inputs” given in [Murll, Definition 3.4].

Definition 2.5.1. Let n > 0. A (planar) tree with inputs is the data of a tree T €
PRT(n) and, for each vertez of T', an integer which represents the number of ingoing
arrows, which may includes some edges of T'. We also add an outgoing arrow on the
root of T'. The ingoing arrows with only one vertex of T are called the inputs of the
tree.

A \
(1)

We usually denote by T any tree with inputs with underlying tree T € PRT. We call
T the shape of T, and set Shape(T) = T. We also set Vp = Vp. For every vertex
v € Vp, we denote by valp(v) the number of ingoing arrows which go to v. We denote
by PRT i(n) the set of trees with n vertices and k inputs and Tree,(n) = K[PRT r(n)].
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As in Definition 2.1.20, we can consider trees with inputs ' € PRT x(a; < --- < ay,)
in a general totally ordered finite set a; < -+ < a,. We say that T is canonical (or in
the canonical order) if its shape Shape(Z') € PRT (a; < --- < ay,) is canonical.

For every tree T € PRT x(n), we endow the inputs with the canonical labeling from
1 to k obtained by following the canonical order of T'. For instance, the tree given in
the definition is seen as

As for trees in PRT, we have the following definitions.

Definition 2.5.2. Let T be a tree with inputs and with underlying shape T' € PRT .

— A subtree of T is the data of a subtree S of T, endowed with the unique choice
of arrows such that, for every v € Vg C Vi, we have valg(v) = valr(v).

— If S is a subtree of T, we denote by T/S the tree of shape T'/S obtained by
contracting the tree S on the tree with only one vertex, denoted by S, with the
same number of inputs as S.

For instance, if we consider the above tree with inputs 7', then the following tree
with inputs

1 2
3 4
§: /
is a subtree of T such that
12345
\
6
/5 - ORONIBO

Let p,g,n,m > 0,1 <i<pand U € Treey(n),V € Tree,(m). We let Uo; V to be
the tree in Treey,—1(n+m) given by the attachment of the unique outgoing arrow of
V to the i-th ingoing arrow of U. This defines a morphism

o; : Tree,(n) ® Tree,(m) — Treeyiq_1(n+m).
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Lemma 2.5.3. Let Tree be the sequence defined by

Tree(k) = @Treek(n).

n>0

Then the morphisms o; : Tree, ® Tree, — Treey -1 endow the sequence Tree with
the structure of an operad.

Using this notion of tree, we set

Fom =P P o Mual)
) 1=1

n>0 \TEPRT4(n .
where, in the sum, we consider the action of %, on PR7T(n) by the permutation of
the labels of the vertices, and the action of ¥, on @);_; M (valy(i)) by permutations.
The operadic structure of F(M) is given by the operadic structure of Tree and the
concatenation of the elements in M. We denote by Fir)(M) = @, M(valr(i)) the
T-component of F(M) associated to some tree T € PRT i (n).

We can check that the functor F : Seqq — Op is left adjoint to the forgetful
functor w : Op — Seqx which forgets the operad structure:

F:Seq m—— Op:w .

This adjunction implies the following result.

Proposition 2.5.4 (see [Murll, Theorem 1.1]). The category Op is endowed with
a cofibrantly generated model structure such that the forgetful functor w : Op —
Seqg creates weak-equivalences and fibrations. Cofibrations are given by the left lifting
property with respect to acyclic fibrations.

Remark 2.5.5. In the following subsections, we also use the notion of cofree cooperad
generated by a sequence M such that M(0) = 0. For every k > 0 and n > 1, let
PRT " (n) be the subset of PRT x(n) given by trees T such that valy(v) # 0 for every
v € Vp. Let Treey’(n) := K[PRT L (n)]. Then the sequence Tree’ defined by

Tree’(n) = P Tree,(n)

k>0

is a suboperad of Tree such that, for every n > 0, the K-module Tree’(n) is finite
dimensional. By Remark 2.1.7, the dual symmetric sequence (Tree®)Y is endowed with
the structure of a cooperad. We then define

Xn

F(M)(k) =P P 17e@)Mval(i)

n>1 \TePRT,"(n) i=1

where we consider the action of ¥, on TV by permutation of the vertices, and the
action of ¥, on @), M (valy(i)) by permutations. We endow F¢(M) with the cooperad
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structure given by the cooperadic structure of (’Treeo)v, and by the deconcatenation
coproduct in the tensor coalgebra of @@1 M(n). As for operads, we have an adjunction

w: Op® T Seqg : F*
where w : Op® — Seqy s the functor which forgets the cooperad structure.

We will need to consider operadic compositions (resp. cooperadic cocompositions)
shaped on trees with inputs. This can be formalized as follows. Let P be an augmented
operad P ~ I & P and C be a coaugmented cooperad C ~ I @ C such that P(0) =
C(0) = 0 and P(1) = C(1) = K. By the universal property satisfied by F, we have a
unique operad morphism F(P) — P which reduces to the identity on P C F(P).
Analogously, we have a unique cooperad morphism C — F¢(C) whose projection on
C is given by the identity on C.

Definition 2.5.6. Let k > 1 and T € PRT;’. We define vy : Fir)(P) — P and
Aqy:C— Firy (C) by the composites

Vo) Fy(P) —— Fy(P) —— P » P

Ay :C —— C —25 F4y(€) — F&p)(C) .

For every p,q,n,m >0 and 1 <7 < p, we define a morphism
o, : Tree,(n) ® Tree,(m) — Treey(n+m — 1)

by the following. Let U € PRT ,(n) and V. € PRT,(m). If the number of arrows on
the i-th vertex of U is not ¢, then U o; V = 0. Else, we define U o; V as the unique
tree obtained by putting V in the i-th vertex of U, and attaching the ingoing arrows
of the i-th vertex of U into the inputs of V.

Lemma 2.5.7. Let T be a tree with inputs and S be a subtree of T. ThenT/SegS =1T.

Proof. 1t is an immediate consequence of the definitions. O]

The morphisms defined in Definition 2.5.6 also behave well with the compositions
o; and e;.

Lemma 2.5.8. Let k> 1, T € PRT,’(n) and S C T. Then
Y/s) 05 Vs) = V) 5 Ays) 0s D) = A

in the endomorphism operad Endgy _ p(n) and in the coendomorphism operad CoEndgy _, c(n)
respectively. N =

Proof. These are direct consequences of the (co)associativity axioms in a (co)operad.
[
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2.5.2 A cosimplicial frame for B(C)

Let C ~ I ® C be a coaugmented non-symmetric cooperad with C(0) = 0 and
C(1) = K. The goal of this subsection is to construct a cosimplicial frame B¢(C) @ A™
associated to B¢(C). We will explicitly define B¢(C) ® A™ as the free operad induced
by a cooperad up to homotopy that will be given by C ® N, (A™).

Let E be a E-coalgebra. We endow the operad F(C® X~ E) with a general twisting
morphism such that if £ = N,(A%) ~ K, then F(C ® ¥7'E) ~ B°(C). Explicitly, we
construct B : C ® S7'E — F(C ® ¥7'E) such that the morphism dgr : F(C ®
Y'E) — F(C®X'E) obtained from 3 by the Leibniz rule is a twisting morphism.
If we denote by d the differential induced by C ® X'E on F¢(C ® ¥7'E), then the
morphism 3% shall needs (see [LV12] or [Fre09b] for instance) to be such that

d(B”) + 0387 = 0,

Let k> 1 and T € PRT . be a canonical tree with inputs with shape 7' € PRT.
We define 87, : C@ X 'E — Fi)(C® X7'E) by

Blr) = Amy@Apz

where, for every u € £(n), we denote by u¥ the morphism in Hom(E, E®™) given by
the £-coalgebra structure E.

This gives a well defined morphism of sequences 8% : C @ ¥7'F — F(C ® ¥7'E) by
summing over all canonical trees T'. Note that such a sum of morphisms is will defined
on C ® L71E since C(0) = C(1) = 0. It is also natural in E by definition.

Proposition 2.5.9. The morphism ¥ defined above satisfies
d(ﬁE) + 85E5E =0.
We thus have a derivation of operads d + Oge on F(C ® S7'E).

Proof. It is sufficient to prove the formula on C®X"'E. Let T be a tree with inputs with
shape a canonical tree T' € PRT. We show that the T-component of the morphism
d(B%) + 0= " is 0. First, we have

d(B{r)) = Ay®@d(Apr)™F,

since the cooperadic structure on C is preserved by its differential. Next, we have by
definition

(05287 m) = D (Awwys) Osnape(s) D)@ (A/shape(s) Osnape(s) Misnape(s))™"-
sScr

Note that taking a subtree S of T is equivalent to taking a subtree S of 7. We thus
have

(0528%) ) = Y Ay ®(Apurys o5 Aps) =P

ScT



150 CHAPTER 2. Pre-Lie algebras up to homotopy (... )

The proposition follows by Theorem 2.3.3. O]

We can now construct a cosimplicial frame for B¢(C). Recall that the normalized
chain complex N,(A™) admits a structure of a E-coalgebra.

Definition 2.5.10. Let n > 0. We set
BC(C) QR A" = (f(é &® EilN*(An)), (95N*(An>).

We immediately see that B¢(C) ® A® defines a cosimplicial object in the category
of non symmetric operads. By Corollary 2.3.9, we also have that B¢(C) ® A = B¢(C).

Recall from [Frel7b, §3.2.2-§3.2.3] that a cosimplicial frame associated to B¢(C) is
a cosimplicial set B(C)® A*® such that, for every n > 0, the morphism B¢(C)® A" —
B¢(C) ® A" is a weak equivalence and the morphism B¢(C) ® A" — B¢(C) ® A" is
a cofibration for every n > 0.

Theorem 2.5.11. The cosimplicial object B(C) ® A® defines a cosimplicial frame for
B¢(C) in the category of operads.

Proof. Since the morphisms N.(OA") — N,(A") are cofibrations for every n > 0,
the morphisms C ® X' N,(0A") — C ® L' N,(A") are cofibrations (see [Fre09b,
Proposition 1.4.13]). We now prove that B°(C) ® A™ — B¢(C) is a weak equivalence.
We first note that B¢(C) ® A" admits a natural filtration (F,(B°(C) ® A™)), defined
by

RBQOoA) =P @ IeFnCes VA,

k>1 TePRT°
T canonical
IT|>p+1

By definition, the differential 0™ preserves this filtration. We thus have a spectral
sequence which is convergent dimension-wise:

0 c n
Eq = H.(B°(C) ® A")
where we have set

=0 P IeoFnCoS 'N(A").

k>1 TePRT,
T canonical
|T|=q+1

Because the twisting part 0™V+(2") increases the number of vertices, the differential is
reduced to the internal differential d on E{. Because C ® N,(A") — C is a weak
equivalence, we have that the morphism N,(A") — N,(A%) induces a weak equiva-
lence on E) for all p. It then induces a weak equivalence from B¢(C) ® A™ to B*(C).

We then have the result. O
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2.5.3 Computation of Map,,(B“(C),P)

In this last subsection, we give an explicit description of a mapping space Map,,(B(C), P).
We know from Theorem 2.5.11 that we can set

MapOp(Bc(C)7 P)n = MOIOP(BC(C) & An, P)

for every n > 0. The goal of this subsection is to link this object with some FA/Pfoo—
algebra structure on Homgeq, (C @ 71N, (A™),P). We consider the dg K-module

L(Hom(C ® N.(A"),P)) = @ Hom(C(k) @ N.(A"),P(k)).

k>2

This dg K-module is endowed with a filtration defined by

F,(L(Hom(C @ N.(A"),P))) = @ Hom(C(k) ® N.(A"),P(k)).

k>p+1

so that Homgeq, (C ® N,(A"),P) is the completion of £L(Hom(C ® N,(A"),P)) with
respect to this filtration.

Lemma 2.5.12. The dg K-module £L(Hom(C ® N,(A™),P)) is endowed with the struc-
ture of a Brace ® E-algebra defined by
H

(T®M)(f1,...,fk)::|: Z ’y(z)o<f1®...®fk)o(A(I)éﬂN*(An)>’

TcShape™1(T)

foranyT € PRT (k), u € E(k) and fi, ..., fr € L(Hom(CR®N,(A™),P)) homogeneous,
where we consider the tensor product @ (see Definition 2.1.1). The sign is yielded by
the commutation of pu with the f;’s. Note that the sum is finite point-wise since we
have supposed that C(0) =

Proof. Let o € ¥,,. By definition of vy and Ay for every T' € PRT, we have

(0-T@o-p)(fr, -, fi) =T Q) (for)s - form)s

where we consider the action of o on (C ® N,(A"))®* by permutation of the tensors.

We now prove the compatibility with the operadic structure. Let p,q > 0 and
U e PRT(p),V € PRT(q),n € E(p),v € E(q) and 1 < i < p. By Lemma 2.5.8, we
have

@) (fr, s fir, VOV fis s fivg1)s fivas o5 Fora1)
= Z Ywow) © (1 @+ @ forg1) © (Aweny®(p o; v)N4Y).

U€&Shape™1(U)
VeShape™H(V)

Now, write U o; V. = Ty + --- + T}, for some T1,...,T,, € PRT. By definition of
the composition product in Brace, for every U € Shape ' (U) and V. € Shape *(V),
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the tree U o; V has shape T} for some 1 < 57 < m given by the particular choice of
attachments forced by V. In the converse direction, for every tree 7" with shape 77,
there exists a unique subtree V. C T with shape V such that U := T'/V has shape U.
This then proves that

(U ®:u)<fl> .. '7fi—1a <V® V)(fi? .. '7fi+q—1)afi+q> .. 'vfp-i-q—l)
=2U o V@uoiv)(fi®: -+ ® fpig1).

]

Proposition 2.5.13. The dg K-module Homgeq, (C ® SN (A"),P) is endowed with
the structure of a TAP L, -algebra.

Proof. By Lemma 2.5.12 and Theorem 2.3.11, the dg K-module X £(Hom(C®N, (A"), P))
is endowed with the structure of a AP L -algebra. By taking the completion, we ob-
tain that Hom(C ® LN, (A"), P) is a TAPL-algebra. O
From the definition of the Brace ® £-algebra structure on Hom(C ® N, (A™), P), we
H
deduce a first computation of Mapg,,(B°(C), P).

Corollary 2.5.14. We have the isomorphism of simplicial sets
Mapg,,(B(C), P) ~ MC(Homgeq, (C® 7INL(A®),P)).

Our goal is now to link this computation with the simplicial Maurer-Cartan set of
Homgeq, (C, P). Recall that N,(A™) has a basis given by increasing sequence of integers
0<ay<-- <a, <n which we denote by ag ---a,. We let B, to be this basis.

Lemma 2.5.15. Let n > 0. We set
¢n : L(Hom(C ® N,(A"),P)) — L(Hom(C,P))® N*(A")
f '—> ZQEBTL f£ ® £V
where, for every x € N,(A") and f € L(Hom(C ® N,(A"™),P)), we denote by f* €
L(Hom(C,P)) the map defined by f2(c) = (—1)l2l f(c® 2) for every c € C.

Then ¢, is an isomorphism of Brace @ &-algebras.
H

Moreover, the sequence of isomorphisms (¢n)n>0 is compatible with the simplicial struc-
tures.

Proof. We first prove that ¢, commutes with the differentials. Let f € L(Hom(C ®
N.(A"™),P)). Then

don(f) =D d(fH ez’ + > (-D)IIHE e ).

z€B, z€B,
For every ¢ € C, we have that

d(f%)(c) = (=1)Mld(f(c ® 2)) — (1) f£(d(c) @ 2)

which gives

d(f) = d(f)% + (=) pi@),
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We thus obtain

= Z d(f) Loz + Z |f| fd Rz’ + (—U'ﬂfl@d(gv)),

x€Bn, z€By

It remains to prove that

Z fd(z) Rz’ =— (_1)@\]@ ® d(z").

zEBy, z€By,

For every z € B, we write d(z) = > .5, )\%g where A} € {—1;0;1}. We thus have,

for every y € B,,
d(y') = —(=1)"¥ Y Mz

z€By,
We thus have
Yo rWer = Y Mfroz
z€B, z,YEBr
- _ Z Iyl FLed( Q vy,
yeB,

At the end, we have obtained that

=Y Aoz’ = ou(d(f))

z€By,

so that ¢, commutes with the differentials.

Now, let fi,..., f, € L(Hom(C ® N,(A"),P)) be homogeneous elements. Let T' €
PRT be a canonical tree with r vertices and p € £(r). We have

(T®:U’)(¢n(f1)77¢n(f7">>
= Y Y thpe(ffe-e e Ar) @ u A, . .,1,Y),

TcShape™1(T) Z1,.-.,2r€Bn
where the sign is given by
.
H(_l)lﬂl(\fﬂﬂﬁ\) x H(_l)lul(\fﬂﬂﬁ\).
i<j j=1
Now, for every x € B,,, we write

W= ), TEme e

-------

where A" € {—1;0; 1} by definition of the interval cuts operations. This gives, for

every xy,..., o, € By,
'U/N*(An)<x1v7‘ - 7&\/) _ Z iiv

z€Bn,
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where the sign is given by

)\% ~~~~ Zr H<_1)|ﬂ||ﬁ| H(_l)\ﬂ\\ﬁ\_
j=1

i<j
We thus have
(T@u)(Sn(f1),- - 0ulf)) = Y > EOmo(fire @ ) oA ) @z

TcShape™1(T) Z,%1,...,2rEBn

where the sign is

Mg ﬁH Ilelfgl H \qu]

1<j

We now use that, for every ¢ € C,

(fir@- e fM)Ap@)=£(fie- 0 f)o(An (8 & e 1))

where the sign is given by

[ ﬁ(_l)wm

i<j
We deduce

(T@p)(Sn(f1),- o dalfN) = D D+ (he-0f)(Ax(@)@p™ ) ()

TeShape™ (T) 2EBn

where the sign is

H 1)l s (1)l e,

.......

since, for every x, 1, ..., 2, € B, such that \z"""** # 0, we have |u|—Y"_, 2| = —|z|.
We finally obtain

(TRu)(Gn(f1), - bu(f)) =D (TR(frr - [))E®Z = Sa(TRp)(f1, .., fr))-

z€By,

We thus have proved that ¢, : £L(Hom(C ® N,(A"),P)) — L(Hom(C,P)) ® N*(A")
is a morphism of complete Brace @ £-algebras, and ¢ is obviously a bijection, with as
H
inverse
on (fer) = (c@zr— (1)1 f(c))
for every f € L(Hom(C,P)) and z € B,,.

The compatibility of the sequence (¢,),>o with the simplicial structures follows
directly from the definition of the ¢,’s. m

In particular, the map ¢,, induces an isomorphism of I'(PreLiey,, —)-algebras. We
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thus obtain Theorem G.
Theorem 2.5.16. We have the identity

Map,(B(C), P) = MC,(Homgeq, (C, P)).

Proof. For every n > 0, since the morphism ¢,, given in Lemma 2.5.15 preserves the
filtrations, taking the completions gives an isomorphism

Homgeq, (C ® 71N, (A"), P) —— YHomgeq, (C,P) ® N*(A")

of FA/PTOO—algebras for every n > 0. Since this isomorphism preserves the simplicial
structures, we obtain the theorem. O

2.6 A mapping space in the category of symmetric
connected operads

In this last section, we show that we can describe a mapping space in the category
of symmetric and connected operads as the degree-wise Maurer-Cartan set of some
complete 'APL -algebra.

In §2.6.1, we recall the construction of the free operad functor in the category of
symmetric connected operads and the model structure on the latter category.

In §2.6.2, we use the surjection cooperad Surk to obtain a ¥,-cofibrant replace-
ment B¢(C ® Surk) of the cobar construction B¢(C) associated to a symmetric coop-
H

erad C such that C(0) = 0. We construct an explicit cosimplicial frame associated to
BC<C ® SUI'K).
H

In §2.6.3, we finally deduce Theorem H which gives a computation of the map-
ping spaces in the category of symmetric connected operads in terms of a degree-wise
simplicial Maurer-Cartan set of some I'APL.-algebras.

2.6.1 The free symmetric operad functor and the model struc-
ture on XOp'

In this subsection, we recall the construction of the free operad functor in the cat-
egory XOp and recall the model structure on the category of symmetric connected
operads SOpY.

We have a functor — ® ¥ : Seqq —> XSeqy defined, for every M € Seqy, by
(M @X)(n) = M(n) @ K[X,],

where M (n) ® K[%,,] is endowed with the ¥, action defined, for every m € M(n) and
o, T € Xy, by
o-(mMRT)=m®Eor.
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The functor — ® ¥ fits in an adjunction
— ® X Seq = YSeq :w ,

where w : ¥Seq — Seq is the functor which forgets the symmetric groups actions.
We have the following result.

Proposition 2.6.1 (see [Fre09a, Proposition 11.4.A]). The category YSeqy is endowed
with a cofibrantly generated model category structure such that the forgetful functor
w : XSeq — Seqy creates weak-equivalences and fibrations. Cofibrations are given by
the left lifting property with respect to acyclic fibrations.

In fact, the category ¥ Op does not have a model structure but rather a semi-
model structure (see [Spi01, Theorem 3]). We instead consider the subcategory XOp°
of operads P such that P(0) = 0. Such an operad is said to be connected. We also
denote by YSeqy the subcategory of YSeqy given by symmetric sequences M such
that M (0) = 0. As for the non symmetric context, we are searching for a convenient
adjunction

F :¥Seqp —— YOp° : w

where w : YOp® — YSeqy is the functor which forgets the operad structure. To
achieve this, recall that the functor — ® X : Seqy — XSeqy restricts to a functor
—® X : Op — XOp where, for every P € Op, the operad structure on P ® ¥ is
defined by

Y(f®0)® (G OM)® - ®(gn® 7)) = EV([ R Go11) @+ ® Gom1(n)) @ O(T1, . .., Tn),

where we consider the composite of o with 7,..., 7, (see after Lemma 2.1.34).

Definition 2.6.2. Consider the operad Tree defined in Lemma 2.5.3. We set
YTree ="Tree® 3.

For every T € YTree, we denote by Vr the set of vertices, and by valp(v) the
number of ingoing arrows on a vertex v € Vp.

The elements of X7 ree(n) can then be seen as trees with inputs endowed with a
choice of labeling on the inputs. We identify such a choice with a permutation in 3J,,.
For instance, if we consider the tree with inputs 7" € Tree given in Definition 2.5.1,
then

|
O

T ® (643215) =
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For every M € ¥Seqg, we consider the sequence

k=@ B Do QM)

n>0 TePRT y(n) 0€Sk

This sequence is endowed with the structure of a non-symmetric operad given by the
operadic structure of 37 ree and the concatenation of elements in the tensor algebra
of @,y M(n). In order to endow this sequence with the structure of a symmetric
operad, we need to identify some elements. First, we endow this sequence with the
Yn-action given by the left translation in X,. For every n > 0, we identify the action
of 3, on T € PRT(n) given by the permutation of the vertices with the action of %,
on Q). , M(valr(i)) given by the permutation of the factors. Next, consider a tree in
YT ree of the form
gt g Ji Uk
¥ ¥

s
=N

forsomer > 1and Ty € PRTy,,..., T, € PRTy, with ki+---+k. = k. Let x € M(r)
and Y € @, M(valy(i)). For every u € ¥,, we make the identification

B B - BT ), e
Jl; e JI; . fk AT g e g
¥ A 14 A >
L - L _ Ly o D
Rrey= —+— Qu-reY.

i / i
We iterate such identifications by induction on the number of vertices of the tree, using

the operadic structure. It is an immediate check that we obtain a symmetric operad,
which we denote by F (M), such that the functor F fits in the left-right adjunction

F :YSeqp ——= YOp° : w .

Proposition 2.6.3 (see [Hin03, §3.3]). The category X Op° is endowed with a cofi-
brantly generated model structure such that the forgetful functor w : LOp® — YSeqy
creates weak-equivalences and fibrations. Cofibrations are given by the left lifting prop-
erty with respect to acyclic fibrations.

Let M € YSeqy. In the definition of F(M), we can restrict to trees in Y7 ree
such that every vertex has at least one input. We denote by Y7 ree” the underlying
sequence. In the following sections, we use an explicit choice of set of representatives
for trees in F(M). Such a choice can be made by taking tree monomials (see [DK10,
§3.1]), for which we recall the definition.

Definition 2.6.4. Let T € SPRT;,<..ci,’ be a tree with m vertices. The tree T is a
tree monomial if Shape(T) is in the canonical order, and if one of the three following
conditions is fulfilled:
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— m =20 (so that T is the unit in the operad X7 ree);
— m =1 and T is of the form

i i

&

for some vertex a;
— m > 2 and T is of the form

N NO¥
T, - T.
= ==
for some vertex a and where T} € ZPRTU%M]}L } , T € XPRT (7., }O are
tree monomials such that min(ji,...,j} ) <--- < mm(jl, )
For instance, the tree
1 9 2 4

\
(4) 5 6

2l 3 (5) €TPRTicx
0

—
-3

is a tree monomial. For every n > 1, we denote by T My(n) the set of tree monomials
with n vertices and k inputs. We have the following result.

Proposition 2.6.5. Let M € YSeqy. Then, for every n > 1,

~Pp PH T®®MvalT

n>0 T€T My (n

Proof. The proposition is obtained by iterating the second claim of Proposition 2.1.35,
and by using the symmetry axioms in the operad F(M). O

As in the non-symmetric context, we have the following remark.

Remark 2.6.6. Since, for every k > 0, the K-module ST ree;” is finite dimensional,
we have that the dual symmetric sequence (E'Treeo)v is endowed with the structure of
a cooperad. We can then define, for every n > 0,

= P Tv®®MvalT

n>0 TeT My(n)
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One can show that this symmetric sequence is endowed with the structure of a cooperad
given by the cooperad structure in (Z'Treeo)v, and by the deconcatenation coproduct in
the tensor algebra of @nZO M (n). As for the free operad functor, we have an adjunction

w: (BOp°)? —— XSeqy : F¢

where we denote by (N Op°©)? the subcategory of XOp° given by connected cooperads,
and where w : (XOp°)° — YSeq, is the functor which forgets the cooperad structure.

As for the non symmetric context, we consider operadic (resp. cooperadic) compo-
sitions (resp. cocompositions) shaped on trees with inputs. Let P be an augmented op-
erad P ~ I ®P and C be a coaugmented cooperad C ~ I ®C such that P(0) = C(0) = 0
and P(1) = C(1) = K. By the universal property satisfied by F, we have a unique op-
erad morphism F(P) — P which reduces to the identity on P C F(P). Analogously,
we have a unique cooperad morphism C — F¢(C) whose composite with the projection
on C is given by the identity on C.

Definition 2.6.7. Let T be a tree with inputs. We define v(r) : F(r) (P) — P and
Ay : C —> Fipy(C) by the composites

)t Fao)(P) —— Fpy(P) —— P —» P ;

_ A ' -
Aqy:C ——C » Firy(C) — Fiy (C)

For every p,q,n,m > 0 and 1 < i < p, as for the non symmetric context, we define
a morphism

o, : XTree,(n) ® XTree,(m) — XTree,(n+m —1)

defined as follows. Let U € XTreey(n) and V. € XTree,(m). If valy (i) # ¢, we set
Ue; V =0. Else, we define U o; V as the tree obtained by changing the i-th vertex of
U into the tree V. The attachment of the ¢ arrows on the i-th vertex of U on the tree
V are given following the order of the labeling in V.

As for the non symmetric context, we have the two following lemmas.
Lemma 2.6.8. Let T be a tree with inputs and S be a subtree of T. ThenT/SesS =T.
Lemma 2.6.9. Let T € PRT (n) and S CT. Then
Vw/s) ©s Vs = Uw) 5 Berys) 05 Dis) = A

in the endomorphism operad Endgy _. p(n) and in the coendomorphism operad CoEndgy _, c(n)
respectively. - -

2.6.2 A cosimplicial frame for B‘(C ® Surk)
H

Let Surk be the surjection cooperad defined in [BCN23, Theorem A.1]. This coop-
erad is actually equal, as a symmetric sequence, to the surjection operad y recalled in
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§2.1.4. Note however that the cooperad structure on Surg is not the cooperad struc-
ture obtained by dualizing the operad structure on xy. We have a weak-equivalence
B¢(C ® Surk) — B¢(C), which provides a ,-cofibrant replacement of B¢(C).

H

In this section, we construct an explicit cosimplicial frame associated to B(C ®
H

Surg) for every symmetric coaugmented cooperad C. To be more precise, we construct
a twisted differential 9" : F(C ® Surg @ L' N,(A")) — F(C @ Surk @ X71N,(A"))
H H

by an inductive process analogue to the one given in Theorem 2.3.7.

For every k > 1, we define ®°, H? : (8 Surk ® Y7LV, (A")®* — (C ® Surk ®
H
NTINL(A™)#F by )
q)" C®Sur ®¢

Rk 1.0
H ZdC®Sur ®h”’

where we use the tensor product ® defined in Definition 2.1.1, and the morphisms

0 he o (BTINL(A™)® — (B7'N,(A™))®* defined after Lemma 2.3.6. We extend

P and HY on F(C ® Surk ® X' N,(A™)) by using the identification given in Proposi-
H

tion 2.6.5. Note that the morphism H? does not preserve the action of the symmetric
groups on F(C ® Surk ® XN, (A"™)).
H
Since the action of the symmetric groups on C ® Surk is free, we can chose an
H

explicit choice of representatives for the orbits. For every n > 1, we let Suri(n) to be
the dg K-module generated by surjections v € Surk(n) of the form

up(l) -+ ug(ro—1) uo(ro)
v ug-1(1) --- Ud—l(rd'—l — 1) uaa(ra)
)

with
wo(1) - ug(ro — 1) -+~ ug—1(1) -+~ ug_1(rg—1 — 1) - ug(l) -~ ug(rg) =1---n

We thus have an isomorphism of graded symmetric sequences Surg =~ Surin ® . This
gives an isomorphism
C®SurK (C®Sur)®%

defined by sending c® (u®0) € C® (Surg @) to (67! -c@u)®0o € (CRSury) @Y.
H H

Note that the differential de preserves such a decomposition, but not the differen-
tial dgurc, since it does not preserve Suer For every | > 0, we let FlSurle to be
the sequence given by surJectlons of degree equal or less than [ in Surf{i and we set

F(C ® Surid) =C ® FSur.

For every n > 0, we aim to define a derivation of operads on F (C urg ®
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YN, (A™)) which reduces to the internal differential of C ® Surk ® X' N,(A™) on
H

trees with only one vertex. We denote by dc, dsur, and ds-1y,(a») the corresponding
differentials on C ® Surk ® X' N,(A"). Let C,s := C ® Suryy ® id. We construct
H H

B Crs@ETIN,(A") — ]-"(E%SurK@E_lN*(A”)) which reduces to dgur +ds-1n, (A
on trees with one vertex and which is such that

de(B") +0"p" =0,

where 0" : F(C® Surk ® 7' N,(A")) — F(C ® Surg ® X' N,(A")) is the morphism
H H
obtained from " by applying the Leibniz rule in F(C % Surk ® 71N, (A™)).

In the following, we endow the sequence of operads F(C ® Surk ® X' N, (A*®)) with
H

the structure of a cosimplicial set with as coface maps (resp. codegeneracy maps) the
coface maps (resp. codegeneracy maps) of the cosimplicial set C ® Surk @ X1 N,(A®)
H

taken tensor-wise. Recall that the cosimplicial relations are given by the following:
— Ifi < j, then &d" = d'd’~ Y
— Ifi < j, then s/d" = d's’™1;
— §d = ¢t = id:
— Ifi > j + 1, then s/d* = d"~'s7;
— If i < j, then s/s’ = s's/TL,

Note that we have an extra codegeneracy s~ : N,(A") —s N, (A" 1) defined for every
0<ay<--<a <nbysa- -a)=(ag—1) - (a, — 1), with the convention
s'(ag---a,) = 0if ap = 0. One can easily check that the above relations are still
satisfied with the addition of this degeneracy.

Construction 2.6.10. We define a sequence of degree —1 morphisms " : C ® Surk ®
H
S7INL(A") — F(C ® Surg ® X' N,(A™)) by induction on n > 0. Let 0" : F(C®
H H
Surk ® 271N, (A")) — F(C ® Surk ® @E LN, (A™)) be the morphism obtained from
H
B" by the Leibniz rule.
We let 5° to be such that dz + 0° is the differential of the cobar construction B*(C ®
H
Surg) ~ .7-'(5(§>SurK®E_1N*(AO)). We set B(y) = dsurc +ds-1n,(an). For every k > 1,
we define the component ﬁ&) of B given by trees with k + 1 vertices by induction on
k and n. More precisely, we define 56@) on FiChs @ SN, (A™) by induction on | > 0.
Let c € FiC,s and x € N,(A"™) be a basis element.

— Ifx #0---n, let 0 < i <n be such that x =0---(i — 1)a;---a, withi < a; <
< ar <n. We set

B&)(C @Y ) = dlﬂ&;l(c ® L),
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Bly(c®ET0-2n) = (= 1)""H°d°6(k) (c®270- - (n—1))

p+a=Fk
P,q7#0

The morphism 3, is then extended on FiChs ® ¥ ® X7'N,L(A™) by symmetry.
Lemma 2.6.11. For every n,k > 0, we have
VO <j<n—LdBH" = Bhd;

VO<]<nsﬁ ﬁk)

where we consider the morphisms B(k) defined in Construction 2.6.10.

Proof. Since the coface maps and codegeneracy maps preserve the action of the sym-
metric groups on CQ®Surk @2~ N, (A"), it is sufficient to prove it on F;C,,s @S~ N, (A")
H

for every [ > 0. Let ¢ € C,, and let z € N,(A™) be a basis element. We prove the
formulas by induction on n, k,I > 0. The assertion is obviously true for n = 0, and for
n > 1 and k£ = 0. We now suppose that n, k > 1.

We prove the first line of the lemma. Let 0 < j<n—1. lfx =0---(n— 1), then
we indeed have djﬁ(’gl(c@) Yolx) = B("k)dj (c®X~1x) by definition of By Suppose now
that z #£ 0---(n — 1). Then there exists 0 < i <n—1suchthatz =0---(i — 1)a; - - a,
witht <a; <---<a, <n-—1.

If j =1, then

flPens ™) = fleondn)
= dfjy(c® E_lsl_ d'z)
= djﬁ?]f)<c® Ei &)7

since s~ 'd’ = id. If j > i, then

Bipd(c®X™'z) = B (c® L dz)
— dlﬂn 1(0@2 1 z 1djx)
— dlﬁn 1(6@2 ld_j 1 z 1[E)

since s 'd/ = d’~'s*~!. By induction hypothesis on n — 1, we deduce

Totlco sl = BT )
= djdzﬂ” ®Elzl)
= dB, 1( ®2 ly).

If j < i, then

Bl (c@ ¥ 'z) = & (co s dix)
djﬁ&gl(c ® X7 1),



2.6. A mapping space in the category of symmetric connected operads 163

since s~ 'd’ = id. We thus have proved that d’ 5851 = B("k)dj.

We now prove the second line of the lemma. Let z € N,(A™). We first consider
2z =0---n. Then, by definition of /B&),

sjﬁ&)(c @%710---n) = (—1)‘C‘st2d06851(c @Y7 (n—1))

— §'H)B oy (dsurc(0) @ X710 -m) — > $THIO By (c @ B0+ m).
p+q=k
P,q#0

Since s’ H? = H?_,s’, we have

By (c@ 10 n) = (~1)H)_ Sd° (c@ X710 (n = 1))

— HY 1878y (dsur(€) @ X7'0--m) = > HY 157008 (c@L7'0-- ).
p+q=Fk
P,q7#0
By induction hypothesis, we have that s/ commutes with 8&)ﬁ&) for every p,q # 0
such that p + ¢ = n. Since s7(0---n) = 0, we have that the sum in the above identity
is 0. Analogously, by induction hypothesis on [ > 0, we have that s/ B(’Lk)(dSurK(c) ®
Y710.--n) = 0. If j > 0, we have s7d® = d’s’~! so that the first term is also 0. If
j =0, then s/d’ = id. We thus have

By (c® £70-n) = ()H_ 55 (e @ £70- - (n = 1)),

By definition of B&;l, the term ﬁ&;l(c ® ¥7'0---(n —1)) is in the image of H? ;.
Since Hy_,H,_; = 0, we obtain s/} (c® X7'0---n) = 0. We thus have proved that
sjﬁ&)(c@) Y»710---n)= 5&)sj(c®2_10~_~n) = 0. Suppose now that  # 0---n. Then
there exists 0 < i < nsuch that z =0...(¢ — 1)a;---a, withi < a; < --- < a, < n.
We thus have

Sjﬁ?k)(c ® 271@ — deiﬁ&;l<c Q Zflsiflg).
If i < j, then s/d’ = d's’~! so that
Bl (c®Xz) = d's’ By (c@ X7 ),
By induction hypothesis on n — 1, we obtain

— diﬁ&;2(c® Z—lsiflsjl)
Biys’ (c® 571z).

Ifi=j,7+1, then
jan -1, _ pn—1 —1 i1
s Bn(c@E ) =B (c® X s x).

i—1

Since we have s~ 'z = s'z, in any case, this gives

sjﬁ("k)(c R Y lz) = B(’Blsj(c ® Y '),
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If © > 7+ 1, then, by induction hypothesis on n — 1,

§Bfy(c@Xlr) = dzi_iﬁgcz(c ® Z‘is?si_%g)
= A7 (c@ X s s )
=0

B8 (c® £7a),

since s’z = 0. At the end, we have proved that s/ By = B&;lsj and thus the lemma. [

Remark 2.6.12. In particular, this lemma implies that

Biy(c@S710:n) =— > HI B (c®S 0 n)

p+q=k
p#0

for every n,k >0 and ¢ € Cp,. Indeed, we have

Ky By (c @ B0 2m) = —(—1)‘6‘Z(—l)iﬁ&)(c@)2—10..?...7@)

= (DY (1 E @ T (1= 1))

+B?]€) (dSurK (C) X Eilo—n) .

By an immediate computation, ifi # 0, then d'H°_, = HOd'. Since ﬁ("k;l(c®2*10 o (n—1))
is in the image of H°_, by construction, and that HCH? = 0, we obtain

H,) B0y (c® X0 -n)
(U (@ S0 (1 1)) + HOB (dsunc(€) @ 510 m)

which proves the above formula.

Theorem 2.6.13. Let n > 0. The morphism 9" : F(C ® Surk ® L7IN,(A")) —
H
F(C ® Surk ® S7IN,(A")) is such that dec + 0" is a derivation of operads. Moreover,
H
the sequence 0° : F(C ® Surk ® X7 'N,(A®)) — F(C ® Surk ® X' N,(A®)) is a
H H

morphism of cosimplicial sets.

Proof. By Lemma 2.6.11, the morphisms 0° preserve the cosimplicial structure of F(C®
H

Surk ® X71N,(A®)). We need to prove that de + 9" is a derivation of operads. This is
equivalent to prove that

de(p")+0"8" =0

for every n > 0. By an immediate induction, we have d¢(8") = 0. It remains to prove
that 0"8"™ = 0. This is equivalent to prove that

> 9y6hy =0

ptq=k
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for every k > 0. We prove it on C,, ® L~'N,(A") by induction on n,k > 0, since
all the maps are symmetric by construction. It is true for n = 0, and for n > 1 and
k = 0. We now suppose that n > 1 and k& > 1. Let ¢ € C,, and z € N,(A") be a basis
element. If z # 0---n, then there exists 0 < i <n —1 and y € N,(A"") such that
d’ y = x. Since the morphlsms de + 0° are compatible with the cosimplicial structure

of F(C ® Surk ® X'N,(A")) by Lemma 2.6.11, we have
H
Z@” B C®Z x) Zd’@ "c@Ey)
p+q=k p+q=k

which is 0 by induction hypothesis on n — 1. Suppose now that x = 0---n. By using
that
n 0 0qn __ - 0
8(0)]'.[” + Hna(o) = Zd — q)n,

we have

Doy By (c @ 2710 om) = Y~ H0[ 0 By (¢ © B710-- - n)

ptq=k
p#0
N1 -1 0qn on -1
_ Z Oy Blp(c@X70---n) + Z ) By (c@ X710 - - n).
prack ptq=k
p#0 p£0

By Lemma 2.6.11, the morphism ®° commutes with the 8&)’8. We thus have that the
last sum is 0, since ¢2(0---n) = 0 because n > 1. Now, we claim that

Z (9(0)8(]0 C®E 10 ) 0.

pt+q=k
p#0
We write
> Oy iy (@S0 n) = Oy 30y Bty (c0S 710 m)+ Y Oy Ipy) By (c@S 710
pra=k p+a=Fk
P70 P,q70

We first deal with the sum at the right hand-side. Since p < k, we can use our induction
hypothesis on p to obtain

> Ao fiplc®@y 0 ) == 3 Y 00 (c® 570 ).

p+a=Fk p+q=k sti=p
P,q7#0 p,q#0  s#0

By a variable substitution, this gives

n n n —1 n n —1
Z 90)9p) Bl (c @ X0 - Z ) Z Iy Bl (c®@ X770+ n)
pt+q=Fk s+t= p+q=t
Pg7#0 E t7£0 q#0

Now, since applying S/ (0) on € ® ¥710---n allows us to apply our induction hypothesis,

0:--n).
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we have

9oy iy By (c @ X710 m) = — Z 0000 By (c® B0 - n).
s+t=k
5,t#£0

At the end, we obtain that

S oAyl T 0 = — 3 o, (z 8&>6@)(c®2‘10mn)> |

pt+q=k s+t=k pt+q=t
P,g#0 5,170

and this last sum is 0 by induction hypothesis on t < k. We thus have proved that

Aoy Bi(c® B0 m) = — 3 7 i (c® B0 ),

p+q=k
p#0

which is equivalent to

7" n —1
> OBy (c@X M0 n) =0,

pt+qg=k

The theorem is proved. O
Theorem 2.6.14. Let C be a symmetric cooperad. Then

B°(C ® Surk) ® A® := (F(C % Surg ® 71N, (A®)),0%)

where 0° s the twisting derivation constructed in Theorem 2.6.13 is a cosimplicial
frame associated to B¢(C).

Proof. The proof uses the same arguments as Theorem 2.5.11, with the differentials
constructed in Theorem 2.6.13. O

2.6.3 Computation of Mapyy,(B°(C),P)

We now describe a mapping space Mapyp,0(B¢(C®Sur), P) for some coaugmented
H

connected cooperad C and for some augmented connected operad P. We recall the
following definition.

Definition 2.6.15. Let M € X]Seq?< be an augmented sequence M ~ I & M with
differential d. The sequence M is an operad up to homotopy if there exists a derivation
of cooperads of the form d + 0 on F¢(XM) with 0537 = 0.

In this situation, we say that 0 is a twisting morphism, and that d + 0 is a twisted
derivation. Recall that giving such a differential is equivalent to giving a morphism

B: F(XM) — ¥ M such that Bisar = 0 and, if we denote by 9 the morphism obtained
from 3 by the Leibniz rule on F¢(XM), then

d(B) + B0 = 0.
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Proposition 2.6.16. Let M € XSeq} be an operad up to homotopy. Then L(M) =
B,.2o M(n)™ is endowed with the structure of a T'(PreLies, —)-algebra.

Proof. Let O be the twisting part of the differential on F¢(XM). We denote by f3 its
composite with the projection on YM. Let x,y1,...,y, € L(M) be elements with
homogeneous degrees and arities, and ry,...,7, > 0. We let E to be the symmetric
sequence spanned by abstract invariant variables Yi,...,Y,,dY],...,dY,, of the same
arities and degrees as y1, ..., Yn, d(y1), ..., d(y,). Let ¥ : E — Y M be the morphism
which sends the Y;’s to the y;’s. This gives a morphism of coalgebras ¢ : I'(L(E)) —
L(XL(M)). Let rq,...,7, > 0 be such that r := r; +--- + 7, # 0 (with, for every
1 < i < n, the assumption that r; = 1 if Y; has an odd degree). We set z{ [} = d(x)
and
m{[ylaﬂ-aynl}m ..... rn Z B(Z\/®x®wo<}/{1y’;n))7
TeTM(r+1)

where we consider the orbit map O defined in Proposition 2.2.20 and where, in this
sum, we identify every tensor TV ® z such that z ¢ @ XM (valp(i)) with 0. In
particular, the above sum is finite.

We first note that these operations preserve L(M). Indeed, the symmetry relations
in the cooperad F¢(XM) will only make involve either actions of symmetric groups
elements on x and the Y;’s, which are invariant, or actions on the tensors given by
O(Y, 2™ ... Y®™) which is invariant under the action of ¥,. It remains to prove formu-
las of Theorem 2.2.22. It is an immediate check that the operations —{{—, ..., —],,
satisfy the relations (i) — (v). We now check relation (vi). First, we have

Z d(ﬁ(z\/ KT ¢O(Y1T1 e ern))) = x{[yb o aan}rl ..... rn{H}Q
TeTM(r+1)

S AT @dw) w0y Vi) = sl v b

TeTM(r+1)

and

TeTM(r+1)

:x{[yk{ll}aylw'-vyn]}l,rl ..... re—1,..,rn
for every 1 < k < n. This gives

Y AR @ @O Ym)

TeTM(r+1)
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Let A : FS(XM) — F¢(F¢(XM)) be the cooperad morphism induced by the cooperad
structure of F¢(XM). Let myg; : F¢(XM) — XM be the projection on M. We keep
the notation 9 for the morphism defined on F¢(F¢(XM)) obtained from & by the
Leibniz rule. Since 0 is compatible with the cooperad structure on F¢(XM), we have
the following commutative diagram:

Let ffzz)(EM) be the sub symmetric sequence of F¢(X M) given by trees with at least
2 vertices, so that F¢(XM) ~ LM @ F¢ >2)(EM) as a symmetric sequence. We denote
by F¢(XM; f(CZQ)(EM)) the Sub_symmetrlc sequence i F¢(Fe(XM)) given by trees
with only one vertex in F(,, (¥M), and the other in ¥M. Then we have the following
commutative diagram:

Fe(F(EM)) ——» F(EM; Foop)(SM))

8l lfﬂ(zﬁ;a)

Fe(Fe(XM)) Fe(SM; Fe(XM))
]:C(ﬂ'zﬁ)l lfc(zﬁ;ﬂzﬁ)
Fe(XM) W)}“C(EM S M)

The above commutative diagrams prove that 0 : FFZQ)(EM) — F¢(XM) is given by
the composite:

— . An — — o F(idyr Didyr —
0 Feg (ST) = Fo(S; Fe ) (SM)) ——HD, Fe(eng; g ) ™) re(siag)

where Ay is the composite of A : (>2)(ZM) — F¢(F¢(XM)) with the projection
on trees with only one vertex in F(,,, (XM). By definition, for every T € TM(r + 1),
we have
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A( )(Tv RDT & w(’)(Y” o YJ”))
=y Y Yo AUV @@ g0 - YIM) @ OV, - Vi)

p+q=r UeTM(g+1) Pitqi=ri

p#£0 VT M(p+1) P1t+pn=p
U.lv(pT )q +-+gn=q

+ ) Z > STt er@ypo( Y

prq=r—1 k=0 UeT M(q+1) s;+pi+ti=r;
p#0 VeTM(p+1) p)+-+pj,=p+1
U V=T sy4-+sn=k

t1 4t tn=q—k

By some variable substitutions, summing over T € T M(r + 1) gives

YO Y e ¥ verewo0r- v |ewor v

p+g=r pit+q=r; UcTM(q+1) VeTM(p+1)

p#0 p1t-+pn=p
+ ) > Y Ve

q1+-+tqn=gq
ptrg=r—1  pl+q=r; UeTM(q+1)
p#0 ! et =pt1
py+-+pp=p+
q1+-+an=q

@ Sh ST VY evo !t v | wot v |
VeTM(p+1)

where Sh is defined analogously as in Definition 2.2.14. We now use that

/

YOV .. YPh) = Z Ly @ POV .y’fffl YR

n
k=1

for every pi,...,p,, > 0 (if pj, = 0 for some k, we just remove the corresponding term).
For a chosed 1 < k < n, we set p; = p; for every i # k and p; = p), — 1. Then, applying
Fe(XM; B), gives

XY el ynbnp) @O V)

p+q=r pi+qi=r; UeTM(q+1)
p#0 pi1+-+pn=p
q++qn=q

+ > Y > UY@z@Sh (s, - Yn by VOV - V).

prq=r—1 k=1 p;+q;=r; itk UcT M(q+1)
p#0 Prtap=rr—1
p1+"'+pn:1”
q1++gn=gq

Applying § again gives
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Z :l:x{[ylu"wyn]}pl ..... pnﬂylv"'uyn]}q1 ..... qn

Pit+qi=ri
p1+-+pn7#0
q1++gn#0

k=1 pi+qi=ry,i#k
Prt+qr=rr—1
p1+-+pnF#0

Finally, the equation d(f8) + 80 = 0 applied on Y rcrpgyny L ® z @ O™ -+ Ym)
gives

Z ix{[ylr'wyn]}i)l ----- Pn{[yla"'7yn]}q1 ..... qn

Pit+qi=ri
n
+ E E Er{ue{yrs - Ynlprps 1o Unbigr g =0
k=1 pit+qi=rsi#k
Pr+qr=rr—1
as desired. [

Corollary 2.6.17. Let M € ZSeq& be an operad up to homotopy. Then the comple-
tion of L(EM), which is [],5, XM (n)>", is endowed with the structure of a complete
I'APL-algebra.

Proof. 1t is the same proof as for [Ver23, Corollary 2.18]. O

We now apply this proposition to M = Hom(C®Surk® N,(A"), P) for every n > 0,
H
which will give Theorem H.

Theorem 2.6.18. Let C be a symmetric cooperad and P be a symmetric augmented

operad such that P(0) = C(0) = 0 and P(1) = C(1) = K. Then, for every n > 0, the

symmetric sequence Hom(C ® Surk ® N,(A"),P) is an operad up to homotopy such
H

that the underlying FA/PTOO—algebm structure on YHomsseq, (C ® Surk ® N,(A"),P)
H
satisfies

Maplo,0(B(C), P) ~ MC(SHomygeq, (C ® Surk ® N.(A*),P)),

where we have set Mapl, 0 (B%(C), P) = Mapyp,o(B(C ® Sur), P)
Proof. Let n > 0. We first note that we have an isomorphism

YHom(C ® Surk ® N,(A"™),P) ~ Hom(C ® Surk ® X' N,(A"), P).
H H

We thus need to construct a morphism

B Fioy(Hom(C @ Surk ® X7'N,(A"),P)) — Hom(C 2 Surk ® X7IN, (A", P)
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such that, if we denote by d the differential induced by the internal differential of
Hom(C @ Surk ® 7' N,(A"),P), and if we denote by 0 : F(,q (Hom(C @ Surk @
H = H

STINL(AM),P)) — F¢(Hom(C ® Surk ® Y 'N,(A"),P)) the morphism obtained
H
from 8 by the Leibniz rule, then d(38) + 0 = 0.

We set, for every fi,..., fm € Hom(C ® Surk ® ¥7'N,(A"),P) and T € T M(m),
H

BITY@ i@ @ fm)=vn) o (L ®: @ fm)o Bl

where 5&) is the composite of the morphism (" defined in Construction 2.6.10 with
the projection on the T-component. We first note that d(5) = 0, since d(8") = 0.
Now, note that the T-component of S(TY @ f1 @ -+ ® f,) is

S v | Lo @ fisa® [uso | R fi| 0Bl | © & fi | oBts).

scr i€Vs i€V /s\{1,...,r(8)—1}

By Lemma 2.6.9, this is equal to

vy o (L@ ® fu)o [ D Bis os Bl

ScT

This terms is 0, since the sum chz 6(”2 /s) 08 ﬁ("ﬁ) is precisely the T-component of
0" "™, which is 0 by the proof of Theorem 2.6.13.

The computation of Mapgopo(Bc(C),P) comes from the construction of B¢(C ®
H

Surk)®A® given by Construction 2.6.10 and from the complete I'(PreLien,, —)-algebra
structure given by Corollary 2.6.17. [
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In this appendix, we recall the notion of an operad and its dual notion, the notion
of a cooperad, and the basic concepts of the theory. The notion of an operad first
appeared in the study of loop spaces. It has now become a powerful tool in order
to study algebraic structures. Our main reference for operads theory is Fresse’s book
[FrelTal.

The notion of an operad can be defined in the context of a symmetric monoidal
category. For simplicity, in this appendix, we work in a category of modules over a
fixed ground ring K, with ® = ®k. In this thesis, we mainly consider operads and alge-
bras in dg K-modules. In this context, we generalize the construction using the tensor
products of dg K-modules (see the conventions in Chapter 2 for a more comprehensive
review of this background).

In §A.1, we give recollections and conventions on the symmetric groups.

173
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In §A.2, we study the category of symmetric sequences XSeqy and its structures.

In §A.3, we define and study the notion of an operad.

A.1 Recollections on the symmetric groups

We begin this appendix by some definitions on permutations. In this appendix, and
in all this thesis, we denote by ¥,, the symmetric groups on the elements 1,...,n. We
usually denote by id the relevant identity permutation, and we write any permutation
o € ¥, as its sequence of values (o(1)---0(n)). We also denote, for every k,l € N, by
[k;1] the set of integers n € N between k and [.

A.1.1 Direct sums and block permutations
Definition A.1.1. Letp,g €N and o € ¥,,7 € ¥,. We defineoc 1 € Xpq by
Vi e [Lp], (c@7)() =1,

Viep+Lip+q],(c®7)(i)=p+7(i).

In other words, o @ 7 acts as o on the first p values in [1;p + ¢], and acts as 7 for
the following ¢ values. For instance, if o = (132) and 7 = (2431), then

o @7 = (1325764).

We immediately see that the operation @ is associative in |_|nZO Y.,. This allows us
to generalize the definition to the direct sum of r permutations oy & - - - @ o,.

The direct sum behaves well with the group structure in ¥, in the following sense.

Lemma A.1.2. Let 01,71 € ¥0,,09, T2 € Xy e ooy Opy Tr € 2. Then
(1@ o) (M&-—- 1) =011 B - D 0opT,.

In particular, if we set n = ny + --- + n,, then we have an inclusion of groups
Yp, X oo X X, — 2, given by the direct sums.

We now define the notion of a block permutation.

Definition A.1.3. Letny,...,n, > 1, n=ny+---+n, ando € &,.. We set m; = [n;+
4 n;_1+1;n+- - +n;]. We define the block permutation induced by o and (n4,...,n,)

by
U*(nla cee 7”7“) = Ns1) - Ny (r)-

For instance, if we set o = (231) € X3, then
0.(2,2,1) = (34512).
Lemma A.1.4. Let o,7 € X, and ny,...,n, > 1. Then

(i, ) - Te(No()s - o)) = (0T)u(n1, ... 1y).
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We also have a commutation relation between the bloc permutations and the direct
sum.

Lemma A.1.5. Letoc € ¥, and 1y € Xy, ..., Ty € Xp,.. Then
(M@ ®7) ou(ni,...,n) =0u(na,...,n) - (To) B -+ B To))-

This leads us to the following definition.

Definition A.1.6. Leto € ¥, and 1, € ¥y, ..., T € X,,,.. We define the permutation
0'(7—1, R 77—7") € Zn1+...+nr by

o(t,e.o ) = (M BB 1) 0Ny, ..., n,).

A.1.2 Shuffle and pointed shuffle permutations

In operad theory, we consider decompositions involving direct sums, blocks permu-
tations and certain permutations called shuffie permutations.

Definition A.1.7. Let n = ny + -+ +n,.. A (nq,...,n,)-shuffle permutation is a
permutation in Y, which preserves the order on each block [ny + -+ 4+ n;_1 + 1;n1 +
-+ mn;]. We denote by Sh(ny,...,n,) the set composed of such permutations.

A shuffle permutation w € Sh(ny,...,n,) is pointed if it satisfies w(l) < w(n; +1) <
e <w(ng+ -+ n._1+1). We denote by Shy(n,...,n,) the set composed of pointed
(nq,...,n.)-shuffle permutations.

Proposition A.1.8. Letn >0 and nq,...,n, > 1 such that ny + --- +n, = n.

— Fvery o € ¥, admits a unique decomposition of the form
c=w-(M® - &7)

where 7; € ¥, and w € Sh(ny,...,n,).

— FEvery o € ¥, admits a unique decomposition of the form
o=w-0(T,...,T)

where 7, € ¥,,,0 € X, and w € Shy(ny,...,n,).

A.2 Symmetric sequences

A.2.1 Preliminary recollections

We first recall some definitions which will be useful in the context of symmetric
sequences. We assume that G is any group. In this thesis, the group G will often be a
subgroup of a symmetric group.

Definition A.2.1. Let N be a left G-module.

— We denote by N© the sub module of N given by elementsn € N such that g-n = n
for every g € G.
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— We denote by Mq the quotient of N by the relation g-n = n for every g € G and
ne N.

We have analogous definitions for right G-modules.

Recall that if M and N are left G-modules, then their tensor product M ® N is a
left G-module whose G-action is defined by

g-(m&@n)=(g-m)®(g-n)
for every g € G,m € M and n € N.

Definition A.2.2. Let M and N be left G-modules.

— We define their invariant tensor product by M ®% N := (M @ N)©.
— We define their coinvariant tensor product by M ®@¢ N := (M ® N)g.
Remark A.2.3. If M is a right G-module, then M is also a left G-module with as

G-action g -m :=m - g~ ' for every g € G and m € M. We thus can apply the above
definitions in this context.

A.2.2 Definitions

Definition A.2.4. A symmetric sequence (also called a ¥ or S-module) is a sequence
of K-modules (M (n))nen such that ¥, acts on M(n) for every n > 0. A morphism of
symmetric sequences f : M — N is the data of a sequence of morphisms of modules
fn: M(n) — N(n) which preserve the action of ¥,,.

We denote the underlying category by ¥Seqy.

This category admits several monoidal structures which are used in this thesis.

Definition A.2.5. Let M and N be two symmetric sequences. We define their tensor
product M ® N as the symmetric sequence such that

M ® N(n) = @ K[E,] @s5,x5, M (k) @ N(1),

k+l=n

where we make coincide the natural action of Xy x 3y on M (k) ® N(I) with the action
by right translation on X X ¥ — X, on K[3,]. The ¥, -action on M ® N(n) is defined
by the left translation of ¥, on K[%,].

Proposition A.2.6. The map (M, N) — M ® N is a bifunctor which endows XSeqx
with a structure of a symmetric monoidal category. The unit is given by K concentrated
i arity 0. The symmetry operator is given by c @ m @ n — o0 @ n @ m for every
ceX,, meMandn € N.

We define the composite of two symmetric sequences.

Definition A.2.7. Let M, N € ¥Seq.
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— We define their (coinvariant) composition as

MoN =P M(r)®s, N,

r>0

where we consider the action of X, on N®" by permutation of the factors.

— We define their invariant composition as

MGSN = P M(r) @™ N

r>0

Remark A.2.8. The composition of M, N € ¥Seqx can be realized explicitly by using
Proposition A.1.8:

MoNmn)~ P KShir,....i,)]® M(r)® N(iy) ® - - @ N(i,).

>0 i1+ tir=n

Proposition A.2.9. The bifunctors o and S endow XSeqy with the structure of a
monotdal category with the unit I defined by:

10=14 iz

The bifunctors o and o are related by the trace map Tryny : Mo N — M SN
defined by:

Tryn(m®@n ®---Qn,) = Z (0-m) @Ne101) ® -+ @ Ng-1())-
oEY,

Proposition A.2.10 ([Fre00, §1.1.15]). If N(0) =0, then Tryn is an isomorphism.

A.2.3 The tree representation

In practice, we often represent elements of a symmetric sequence by trees. This can
be formalized by the following proposition.

Proposition A.2.11 ([Frel7a, Proposition 2.5.2]). Let Bij be the category of finite
sets with bijections as morphisms. Then giving a symmetric sequence M € XSeqy 1S
equivalent to giving a functor M : Bij — Mod.

Proof. Any symmetric sequence M gives rise to a functor M : Bij — Modk defined
by
M(I) = Bij([1;n], I) ®s, M(n).

In the converse direction, any functor M : Bij — Modk gives a symmetric sequence
defined by M (n) := M([1;n]). O

Hence, every element x € M(n) can be seen as a tree
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TR
:
0
where [ = {iy,...,i,} is a finite set of n elements. This representation satisfies the
relation
7:1 DY ?:n Z’O’(l) LIS Z-o_(n)

N

0 0

We can also represent elements in a composite M o N by a tree with two levels:

Q
&
Il

NS C
yl yn

where x € M(n) and y; € M(m;) for every 1 < i < n. This representation is required
to satisfy the following equivariance relations

il oo g U 1 i1 cee gt i

yl e yn

o) .. o) o) ... o
Y 21 T,y 21 Ty,

hn T Yn Yo (n)

witho € ¥, i, € 3, forall 1 <17 <n.

A.2.4 The functors S and I

Definition A.2.12. Let M be a symmetric sequence and V be a K-module. For every

category C, we denote by End(C) the category of endofunctors with natural transforma-
tions as morphisms. We define two functors S,T" : ¥Seqx — End(Modg) by

S(M, V) =P M(n) ®s, V",

n>0
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D(M,V) =D M(n) @™ ver,

n>0
where we consider the action of X, on V& given by the permutation of factors.
Proposition A.2.13. Let M, N € XSeq.

— We have natural isomorphisms
S(M®N) ~S8(M)®S(N);
'M®N)~T(M)®I(N),

where we define the tensor product of functors pointwise by (FRG)(V) = F(V)®
G (V) for all functors F,G € End(Modk). We accordingly get that the mappings
S Mv+— SM) and T' : M —— T'(M) define symmetric monoidal functors
S, T (ESeqg, ®,K) — (End(Modk), ®, K).

— We have natural isomorphisms

S(MoN)~S(M)oS(N);

'(MoN)~T(M)oI'(N),

where o denotes the composition of functors: (F o G)(V) = F(G(V)). We ac-
cordingly get that the mappings S : M — S(M) and T' : M —— T'(M) define
monoidal functors S,T : (XSeqy, 0, I) — (Mod, o, Id).
For every M € XSeqyx, we have a natural transformation Try : S(M,—) —
(M, —) defined, for every V € Modg and vy,...,v, € V,;m € M(n), by

Trym@u & - Qu,) = Z (0-m) @Vy101) @ -+ @ Vg1(n).

oEY,

This transformation is compatible with the above monoidal structures.

Remark A.2.14. The natural transformation T'r is an isomorphism if K is of char-
acteristic 0, but it is not an isomorphism in general.

A.3 The notion of an operad

In this section, we introduce the notion of a (symmetric) operad, and everything
that will be necessary in this thesis regarding this notion.

A.3.1 Definitions

The idea on the notion of an operad is to mimic a sequence of functions of several
variables. This can be formalized as following.

Definition A.3.1. A (symmetric) operad is a symmetric sequence P endowed with a
distinguish element 1 € P(1) and morphisms

y:P(r)@P(n) @ - @P(n,) — Plny+---+n,)

for every r,ny, ..., n,. >0, which fulfill the following azioms:
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— Associativity: for every p € P(n), ¢ € P(s1),...,q € P(s,), 6/ € P(n)),

TAPRN® - ®¢)R R R R RO RO
=P ®6;®--- 26" ®7(¢ @0, ®---®67)).

— Unit: for every p € P(r), p(1,...,1) =p = 1(p).

— Equivariance: for every p € P(r), ¢ € P(s1),...,4 € P(s,),0 € Xy, 71 €
Ygyyeoo, Tr € X,

7(0'p®7_1'q1®"'®7—r'%‘):O-(Tla'-wTr>'7(p®q1®"'®(b’)‘
A morphism of operads ¢ : P — Q is a morphism of symmetric sequences which
preserves the unit and the operadic composition.
We denote by XOp the category of symmetric operads.

Remark A.3.2. Let P € ¥Seqx. Then giving the structure of an operad on P is
equivalent to giving the structure of a monoid in the monoidal category (XSeqy, o, 1).

We also have a notion of a non symmetric operad, which is the same definition as
for a symmetric operad, but without the symmetric group actions and the equivariance
axiom. We denote by Op the category of non symmetric operads. Note that we have
a forgetful functor

w:X0p — Op

obtained by forgetting the group actions.
We give two important examples of operads. One example if the operad of permu-
tations:

Proposition A.3.3. The sequence (K[X,]),>0 is endowed with the structure of a sym-
metric operad. The ¥, action on K[¥,] is given by left translations. The operadic
composition is defined by

Vo - @7)=0(m,...,7).
Another important example is the endomorphism operad:
Proposition A.3.4. Let V € Modgk. For every n > 0, we set
Endy (n) = Mor(V®", V),

endowed with the X, action given by its action on V®". Then Endy is a symmetric
operad.

Using the associativity and the unit axioms, we can build the full operadic compo-
sition v from compositions with only two elements, which we call partial compositions.

Definition A.3.5. We call partial compositions the operations o; : P(n) ® P(m) —
P(n+m —1) defined for every 1 < i <n by

poig=p(l,....q...,1).
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Remark A.3.6. Using the associativity and unitality axioms, we see that the axioms
for an operad can be expressed in terms of the partial compositions. It is even stronger:
we can give an equivalent definition on the notion of an operad only in terms of partial
compositions (see [LV12, §5.58.7] or [Frel7b, §2.1]).

The category of symmetric operads is endowed with a monoidal structure given by
the Hadamard tensor product.

Definition A.3.7. Let P and Q be (symmetric) operads. We define the operad P& Q
H

by
(P©Q)(n) ="P(n) @ Qn)

endowed with the diagonal X, action. The operadic compositions are given by

(P2 Q)(n) @ (P& Q)(m) —— P(n) @ P(m) @ Qn) ® Qm) 2B (P @ Q)(n+m—1).

A.3.2 The free operad functor

Theorem A.3.8. Let M be a symmetric sequence and P be an operad. Then there
exists a unique operad F(M), called the free operad generated by M, which comes
with a symmetric sequence morphism i : M — F (M) such that, for every morphisms
of symmetric sequences f : M — P, there exists a unique morphism of operads
¢f : F(M) — P which makes the following diagram commutative:

There exist several equivalent ways to construct the operad F (M) associated to a
symmetric sequence M. One way is recalled after Definition 2.6.2, using the language
of trees.

A.3.3 Algebras over an operad

The main motivation for the notion of an operad is to generalize classical algebraic
structures.

Definition A.3.9. An algebra over an operad P (or P-algebra) is a K-module A
endowed with morphisms
A:P(r)@ A% — A
which satisfy the following axioms.
1 CLST c

ooy Wy

— Associativity: for everyp € P(r), 1 € P(s1),...,q- € P(s,),al,...,a*, ... a
A,

MY (PG ®- - ®¢)Ra1®- - -®ai) = A(pRA(¢1®a;®- - -®a]! )@ - - QN(¢®a, @ - -Qai"));

— Unit: for everya € A, AN(1 ® a) = a;
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— FEquivariance: for every p € P(r), a1,...,a, € A, 0 € ¥,
Mo pR@a®@- - ®ar) = AP ® a1y @ ® Go(r))
This notion can be characterized from an operadic point of view by the following
proposition.
Proposition A.3.10. Giving the structure of a P-algebra on A is equivalent to giving

a morphism of operads ¢ : P — End 4.

A.3.4 Monads S(P,—) and I'(P,—) associated to an operad P

We first recall the notion of a monad.

Definition A.3.11. Let C be a category. A monad is a functor T : C — C endowed
with a composition @ T o T — T and a unit n : 1d — T in the category of
endofunctors of C such that the following diagrams commute:

idon nosd idop

Toid ————ToT +—idoT ToToT ToT

Sp !

T Tol ——— T

“w

A morphism of monads is a natural transformation ¢ : S — T which makes the
following diagrams commutative:

SOSLTOT

id
L
S P s T

ST>T

Definition A.3.12. Let (T, u,n) be a monad in a category C. An algebra over the
monad (T, u,n) is an object A € C endowed with a morphism A : T(A) — A which
makes the following diagram commutative:

A Ay ToT(A) — 2 T(4)

\ l)\ M(A)l J/A
A TA) ——— 4

If A et B are algebras over the monad (T, i, m), a morphism of algebras is a mor-
phism f: A —> B which makes the following diagram commutative:
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In this thesis, we are mostly interested in two monads induced by an operad P, for
which we recall the construction.

Proposition A.3.13. Let P be an operad. Then P is endowed with the structure of a
monoid in the monoidal category (XSeqy,o,I). The monoid structure is given by the
operadic composition v : P oP — P.

We thus obtain the following corollary.

Corollary A.3.14. Let P be an operad. Then the functor S(P,—) is a monad whose
algebras are exactly P-algebras. The monad structure is given by the composite

v,id

S(P.S(P,V)) —= S(PoP,V) 2% 5P V) .
In general, the functor I'(P, —) is not endowed with the structure of a monad, unless
if P(0) =0.

Proposition A.3.15. Let P be an operad such that P(0) = 0. Then P is endowed
with the structure of a monoid in the monoidal category (XSeqx, S, I). This monoid
structure is defined by the composite

PSP eLZ pop 2P

Corollary A.3.16. Let P be an operad such that P(0) = 0. Then I'(P, —) is a monad.
The monad structure is given by the composite

T(P,T(P,V)) == (PSP, V) 2L rip vy .
Moreover, the trace map
Tr:S(P,—) — T'(P,—)

is a morphism of monads.
The algebras over this monad have an important role in this thesis.

Definition A.3.17. Let P be an operad such that P(0) = 0. A I'P-algebra (or P-
algebra with divided powers) is an algebra over the monad I'(P, —).

Remark A.3.18. In particular, using the trace map, every I'P-algebra is a P-algebra.

The classical example is associated to commutative algebras. Let Com be the op-
erad such that Com(0) = 0 and Com(n) = K for every n > 1 with trivial compositions
and trivial symmetric groups actions. The operad Com governs associative and com-
mutative algebras with no unit.

Example A.3.19. Giving a I'(Com, —)-algebra is equivalent to giving a K-module V
endowed with operations v, : V" — V' for every n > 1 which mimic the operations

1 n
Tn(T) = e

Namely, the operations 7y, are required to satisfy the following formulas:
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1. v =1d;

2 (@ +y) =) + > w@)®y) + )
+q=n
pp,;ﬂ

5. m(Ax) = A"y (2);
4o Yn(T)Ym(T) = (n—;m)')/n—&-m(m);

(nm)!

J. /Ym(’)/n(x)) = W,y"m(x)
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